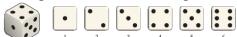
Section 6.1 Experiments, Sample Spaces, and Events

An **experiment** is an activity with observable results (outcomes).

A **sample point** is an outcome of an experiment.

A **sample space** is a set consisting of all possible sample points of an experiment.

A **Finite Sample Space** is a sample space with **finitely** many outcomes.


An **event** is a subset of a sample space of an experiment.

Since an event is defined in terms of a set, it should make sense that we will use what we covered in Chapter 5 in our study of experiments and events.

The **union and intersection** of two events (sets) is defined the same as before.

If the intersection between two events is equal to the \emptyset , then E and F are called **mutually** exclusive.

Example 1: Consider the experiment of tossing a six-sided die.

a. Describe the sample space, S, of this experiment.

b. Describe the event E that an even number is tossed and describe the event F that a multiple of 3 is tossed.

$$E = \{2,4,6\}$$
 $E \cap F = \{6\} \neq \emptyset$
 $F = \{3,6\}$ $E \notin F$ are NOT mutually exclusive

c. Use part b to describe the event that E occurs but F does not occur. Then state the number of sample points in that set.

1

$$(2)(2) = 2^2 = 4$$

Example 2: An experiment consists of tossing a fair coin twice. How many outcomes contain at least one tail?

HH 3 owtcomes
HT
$$C(2,1) + C(2,2)$$

 $\frac{TH}{TT}$ = 2+1 = 3

Example 3: An experiment consists of selecting a letter at random from the letters in the word CONSONANT.

a. What is an appropriate sample space for this experiment?

b. Describe the event "the letter selected is a vowel."

Example 4: An experiment consists of rolling a pair of fair dice and observing the numbers that are on the uppermost surface of each die. Its sample space follows:

	•	•	••.			
$[\cdot]$	(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)
•	(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)
••	(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)
• •	(1,4)	(2,4)	(3,4)	(4,4)	(5,4)	(6,4)
·:	(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)
	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)

a. How many sample points have an odd sum?

$$3(6) = 18$$

b. Describe the event that the sum of the outcomes is at most 3. 2 or 3

$$E = \{(1,1), (2,1), (1,2)\}$$