Random Variables and Probability Distributions

A rule that assigns a number to each outcome of an experiment is called a random

For example, a random variable X can represent the sum of the face values of two six-sided dice. The random variable may take on any number in the set $\{2, 3, ..., 12\}$.

We can construct the probability distribution associated with a random variable.

variable. Capital letters are often used to represent random variables.

If $x_1, x_2, x_3, ..., x_n$ are values assumed by the random variable X with associated probabilities $P(X = x_1) = p_1$, $P(X = x_2) = p_2$, ..., $P(X = x_n) = p_n$, respectively, then the probability distribution of X may be expressed in the following way.

	l D/V	×	P(x - x)
X	P(X=x)	0	1/8
x_1	p_{1}	4	3/8
x_2	p_{2}		1
	·	2 3	3/8
		3	3/8
X_n	p_n		_

We can also graphically represent the probability distribution of a random variable.

A bar graph which represents the probability distribution of a random variable is called a **histogram**.

Example 1: Given the following histogram, calculate the probability that x = 3.

1

Section 7.1 – Random Variables and Probability Distributions

Example 2: The rates paid by 25 financial institutions on a certain day for money-market deposit accounts are shown in the accompanying table:

Rate, %	2.95	3.00	3.15	3.25
Number of Institutions	3	7	7	8 Total = 25

a. Let the random variable X denote the interest paid by a randomly chosen financial institution on its money-market deposit accounts and find the probability distribution associated with these data.

×	2.45	3.00	3.15	3.25
P(X = x)	3/25	7/25	7/25	8/25
	=.12	= .28	=.28	= 32

b. Draw the histogram associated with these data.

c. Find:

$$P(X \ge 3.00) = P(X = 3) + P(X = 3.15) + P(X = 3.25)$$

$$= .28 + .28 + .32 = .88$$

$$P(3.00 < X \le 3.25) = P(X = 3.15) + P(X = 3.25)$$

= .28+.32 = 6