Math 1314
 Lesson 5
 One-Sided Limits and Continuity

Sometimes we are only interested in the behavior of a function when we look from one side and not from the other. In this case, we are looking at a one-sided limit.

We write $\lim _{x \rightarrow a^{+}} f(x)$ for a right-hand limit. We write $\lim _{x \rightarrow a^{-}} f(x)$ for a left-hand limit.

Theorem: Let f be a function that is defined for all values of x close to the target number a, except perhaps at a itself. Then $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L$.

Example 1: Given the graph of f below:

Find each of the following limits, if it exist.
a. $\lim _{x \rightarrow 0^{-}} f(x)$
b. $\lim _{x \rightarrow 0^{+}} f(x)$
c. $\lim _{x \rightarrow 0} f(x)$

Example 2: Suppose $f(x)=\left\{\begin{array}{ll}x^{2}-x+2, & x<1 \\ x+1, & 1 \leq x<2 . \\ -x^{3}-5, & x \geq 2\end{array}\right.$. Find each of the following limits, if it exist.
a. $\lim _{x \rightarrow 2^{-}} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow 2} f(x)$

Continuity at a Point

A function is a continuous at a point if its graph has no gaps, holes, breaks or jumps at that point. Stated a bit more formally, a function f is said to be continuous at the point $x=a$ if the following three conditions are met:

1. $f(a)$ is defined
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

If a function is not continuous at $x=a$, then we say it is discontinuous there.
Example 3: The graph of a function given below is discontinuous at some values of x. State the x-values of where the function is discontinuous then state why the function is discontinuous at each one of those points.

a. Discontinuous at:

- Is $f(\quad)$ defined?
- Does $\lim _{x \rightarrow} f(x)$ exists?
- Does $\lim _{x \rightarrow} f(x)=f(\quad)$?
b. Discontinuous at:
- Is $f(\quad)$ defined?
- Does $\lim _{x \rightarrow} f(x)$ exists?
- Does $\lim _{x \rightarrow} f(x)=f(\quad)$?
c. Discontinuous at:
- Is $f(\quad)$ defined?
- Does $\lim _{x \rightarrow} f(x)$ exists?
- Does $\lim _{x \rightarrow} f(x)=f(\quad)$?

Discontinuities

A function can have a removable discontinuity, a jump discontinuity or an infinite discontinuity.

Let $f(x)$ be discontinuous at $x=a$. Then:

If	Type of Discontinuity
$\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$	Jump
$\lim _{x \rightarrow a} f(x) \neq f(a)$	Removable
$\lim _{x \rightarrow a^{-}} f(x) \rightarrow \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x) \rightarrow \pm \infty$	Infinite

Example 4: Let’s revisit the graph from Example 3.

State the type of discontinuity at:
a. $x=-3$
b. $x=0$
c. $\mathrm{x}=1$

Example 5: Let $f(x)=\left\{\begin{array}{ll}x-6, & x \leq 0 \\ x^{2}+5 x+6, & x>0\end{array}\right.$ is the function continuous at $x=0$?
We need to check:

1. Is $f(0)$ defined?
2. Does $\lim _{x \rightarrow 0} f(x)$ exist? Must check $\lim _{x \rightarrow 0^{-}} f(x)$ and $\lim _{x \rightarrow 0^{+}} f(x)$.
3. $\lim _{x \rightarrow 0} f(x)=f(0)$? i.e. Compare \#1 and \#2 above.

Example 5: Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-25}{5+x}, & x \neq-5 \\ -10, & x=-5\end{array}\right.$ is the function continuous at $x=-5$?
We need to check:

1. Is $f(-5)$ defined?
2. Does $\lim _{x \rightarrow-5} f(x)$ exist? Must check $\lim _{x \rightarrow-5^{-}} f(x)$ and $\lim _{x \rightarrow-5^{+}} f(x)$.
3. $\lim _{x \rightarrow-5} f(x)=f(-5)$? i.e. Compare \#1 and \#2 above.
