# Math 1314 Lesson 5 One-Sided Limits and Continuity

Sometimes we are only interested in the behavior of a function when we look from one side and not from the other. In this case, we are looking at a **one-sided limit**.

We write  $\lim_{x\to a^+} f(x)$  for a **right-hand limit**. We write  $\lim_{x\to a^-} f(x)$  for a **left-hand limit**.

**Theorem**: Let f be a function that is defined for all values of x close to the target number a, except perhaps at a itself. Then  $\lim_{x\to a} f(x) = L$  if and only if  $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = L$ .

Example 1: Given the graph of f below:



Find each of the following limits, if it exist.

$$a. \lim_{x \to 0^{-}} f(x)$$

b. 
$$\lim_{x \to 0^+} f(x)$$

c. 
$$\lim_{x\to 0} f(x)$$

Example 2: Suppose  $f(x) = \begin{cases} x^2 - x + 2, & x < 1 \\ x + 1, & 1 \le x < 2. \end{cases}$  Find each of the following limits,  $-x^3 - 5, & x \ge 2$ 

if it exist.

a. 
$$\lim_{x\to 2^-} f(x)$$

b. 
$$\lim_{x\to 2^+} f(x)$$

c. 
$$\lim_{x\to 2} f(x)$$

1

## **Continuity at a Point**

A function is a **continuous** at a point if its graph has no gaps, holes, breaks or jumps at that point. Stated a bit more formally, a function f is said to be continuous at the point x = a if the following three conditions are met:

1. 
$$f(a)$$
 is defined

2. 
$$\lim_{x \to a} f(x)$$
 exists

2. 
$$\lim_{x \to a} f(x)$$
 exists 3.  $\lim_{x \to a} f(x) = f(a)$ 

2

If a function is not continuous at x = a, then we say it is discontinuous there.

Example 3: The graph of a function given below is discontinuous at some values of x. State the x-values of where the function is discontinuous then state why the function is discontinuous at each one of those points.



### a. Discontinuous at:

- Is f( ) defined?
- Does  $\lim_{x \to a} f(x)$  exists?
- Does  $\lim_{x \to f} f(x) = f($

#### b. Discontinuous at:

- Is f() defined?
- Does  $\lim_{x \to a} f(x)$  exists?
- Does  $\lim_{x \to a} f(x) = f(x)$

### c. Discontinuous at:

- Is f() defined?
- Does  $\lim_{x \to a} f(x)$  exists?
- Does  $\lim_{x \to f} f(x) = f($  )?

## **Discontinuities**

A function can have a removable discontinuity, a jump discontinuity or an infinite discontinuity.

Let f(x) be discontinuous at x = a. Then:

| If                                                                                          | Type of Discontinuity |
|---------------------------------------------------------------------------------------------|-----------------------|
| $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$                                      | Jump                  |
| $\lim_{x \to a} f(x) \neq f(a)$                                                             | Removable             |
| $\lim_{x \to a^{-}} f(x) \to \pm \infty \text{ or } \lim_{x \to a^{+}} f(x) \to \pm \infty$ | Infinite              |

Example 4: Let's revisit the graph from Example 3.



State the type of discontinuity at:

a. 
$$x = -3$$

b. 
$$x = 0$$

c. 
$$x = 1$$

Example 5: Let  $f(x) = \begin{cases} x-6, & x \le 0 \\ x^2+5x+6, & x > 0 \end{cases}$  is the function continuous at x = 0?

We need to check:

- 1. Is f(0) defined?
- 2. Does  $\lim_{x\to 0} f(x)$  exist? Must check  $\lim_{x\to 0^-} f(x)$  and  $\lim_{x\to 0^+} f(x)$ .

3.  $\lim_{x\to 0} f(x) = f(0)$ ? i.e. Compare #1 and #2 above.

Example 5: Let 
$$f(x) = \begin{cases} \frac{x^2 - 25}{5 + x}, & x \neq -5 \\ -10, & x = -5 \end{cases}$$
 is the function continuous at  $x = -5$ ?

We need to check:

- 1. Is f(-5) defined?
- 2. Does  $\lim_{x \to -5} f(x)$  exist? Must check  $\lim_{x \to -5^-} f(x)$  and  $\lim_{x \to -5^+} f(x)$ .

3.  $\lim_{x \to -5} f(x) = f(-5)$ ? i.e. Compare #1 and #2 above.