Math 1314

Lesson 7

Derivatives at a Point, Numerical Derivatives and Applications of the Derivative

Numerical Derivatives

Example 1: Find the numerical derivative of $C(x)=0.000003 x^{3}-0.04 x^{2}+200 x+70000$ when $\mathrm{x}=2500$.
Command: Answer:

Example 2: Find the numerical derivative of $f(x)=x^{\frac{3}{2}}-e^{2 x}+\ln (x)$ when $x=4$. Enter the function into GGB. Command:

Answer:

The graph below is the graph of a tangent line to a function at a specific point. Recall that the derivative is a formula for finding the slope of a tangent line to a function at a specific point. Hence, we can find the equation of the tangent line to a function at a specific point.
Command: tangent[<x-Value>,<Function>]

Example 3: Find the slope of the tangent line when $\mathrm{x}=-1$ if $f(x)=\frac{x \sqrt{x+2}}{(2 x+3)^{2}}$.
Enter the function into GGB.
Command:
Answer:

Example 4: Write an equation of the line that is tangent to $f(x)=1.6 x^{3}+6.39 x-2.81$ at $(3,59.56)$. Enter the function into $G G B$.
Command:
Answer:

In other cases, we may want to find all values of x for which the tangent line to the graph of f is horizontal. Since the slope of any horizontal line is 0 , we'll want to find the derivative, set it equal to zero and solve the resulting equation for x.

Example 5: Find all x-values on the graph of $f(x)=5-3 x+2 x^{2}$ where the tangent line is horizontal.

We can also determine values of x for which the derivative is equal to a specified number. Set the derivative equal to the given number and solve for x either algebraically or by graphing.
Example 6: Find all values of x for which $f^{\prime}(x)=3: f(x)=\frac{1}{3} x^{3}+\frac{5}{2} x^{2}-7 x+3$

Command:

Answer:

Many of our problems will ask for the rate at which something is changing at a specific number. Other times, the problem will ask for a function value or an average rate of change (as we saw in the previous lesson). From there we'll apply the appropriate method.

Example 7: The model $N(t)=34.4(1+0.32125 t)^{0.15}$ gives the number of people in the US who are between the ages of 45 and 55 . Note, $N(t)$ is given in millions and $t=0$ corresponds to the beginning of 1995. Enter the function into GGB.
a. How large is this segment of the population projected to be at the beginning of 2011?

Command:
Answer:
b. How fast will this segment of the population be growing at the beginning of 2011? Command:

Answer:

Example 8: A study conducted for a specific company showed that the number of lawn chairs assembled by the average worker t hours after starting work at 6 a.m. is given by $N(t)=-t^{3}+7 t^{2}+18 t$.
a. At what rate will the average worker be assembling lawn chairs at 9 a.m.? Command:
b. How many lawn chairs will the average worker have assembled by 12 p.m.?

Command:
Answer:
c. What is the average rate at which the lawn chairs are assembled from 7 a.m. to 11 a.m.

Command:

Answer:

Example 9: The height of a rocket can be modeled by the function $h(t)=-16 t^{2}+48 t+6$ where $h(t)$ gives the height in feet at time t given in seconds.
a. What is the height after 2 seconds?

Command:
Answer:
b. At what rate is the height changing when $t=1$?

Command:
Answer:
c. When will the rocket hit the ground?

Command:
Answer:

Sometimes we need to find the derivative of the derivative. Since the derivative is a function, this is something we can readily do. The derivative of the derivative is called the second derivative, and is denoted $f^{\prime \prime}(x)$. To find the second derivative, we will apply whatever rule is appropriate given the first derivative.

Example 10: Find the second derivative: $f(x)=4 x^{5}-x^{2}-7 x+5$

Example 11: Find the value of the second derivative when $x=5$ if $f(x)=\frac{x^{2} \ln x}{\left(x^{2}+3\right)^{\frac{1}{3}}}$.
Enter the function into GGB.
Command:
Answer:

An application of the second derivative would be acceleration, as it's the rate at which velocity is changing.

