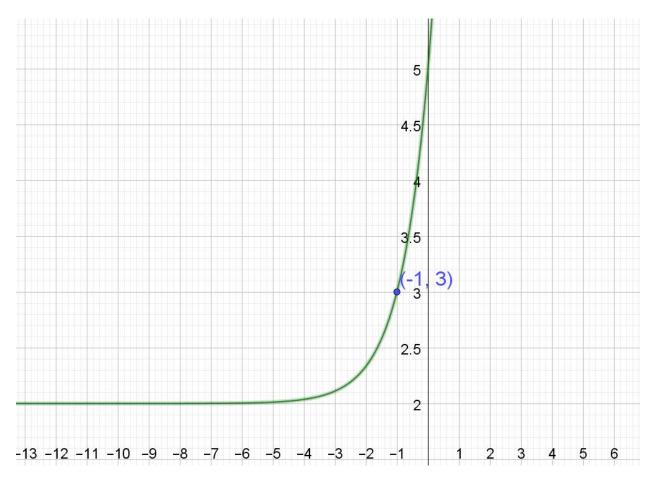
Math 1330 Algebra Review Part 3

Exponential Functions

Functions whose equations contain a variable in the exponent are called exponential functions.

The **exponential function** *f* with base *b* is defined by $f(x) = b^x$ (b > 0 and $b \neq 1$) and *x* is any real number.

If b = e (the natural base, $e \approx 2.7183$), then we have $f(x) = e^x$.


Both graphs have a horizontal asymptote of y = 0 (the x-axis).

Example: Find the domain, range, and horizontal asymptote of the following functions. a. $f(x) = 3^{x+1} - 4$

b.
$$f(x) = 5\left(\frac{1}{2}\right)^x + 1$$

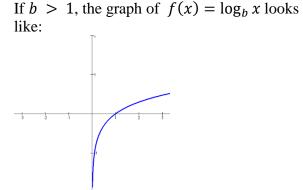
Page 1 of 10

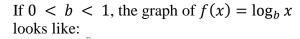
c.
$$f(x) = -3(2^{x+1}) - 5$$

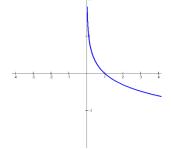
Example: Write an equation of an exponential function with the following graph.

Page 2 of 10

Example: Given $f(x) = 2^{x-1}$ and $g(x) = 5e^{10x}$. Evaluate $(g \circ f)(1)$ and $(g \circ f)(0)$.


Logarithmic Functions


Exponential functions are one-to-one; therefore, they are invertible. The inverse function of the exponential function with base b is called the **logarithmic function with base** b.


The function $f(x) = \log_b x$ is the **logarithmic function with base** *b* with x > 0, b > 0 and $b \neq 1$. Note: The argument (inside) of a logarithmic function must be positive!

Domain: $(0, \infty)$ **Range:** $(-\infty, \infty)$ **Key Point:** (1,0)

The Graph of a Logarithmic Function

Both graphs have a vertical asymptote of x = 0 (the y-axis).

Page 3 of 10

Example: Evaluate $f^{-1}(0)$ if $f(x) = 8^{-1-x} - 32$

Example: Evaluate $f^{-1}(-1)$ if $f(x) = 5^{1-x} - 1$

Logarithm Rules

 $y = \log_b x$ is equivalent to $b^y = x$.

Example: $\log_b 1 = 0$

For $b > 0, b \neq 1, x > 0, y > 0$:

Inverse Property of Logarithms

- 1. $\log_b b^x = x$
- 2. $b^{\log_b x} = x$

(x)

The Quotient Rule

$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

The Product Rule

 $\log_b(xy) = \log_b x + \log_b y$

The Power Rule $\log_b x^y = y \log_b x$

Page 4 of 10

Example: Evaluate, if possible.		
a. log ₇ 49	b. log 1000	c. $\log_2(-8)$
	-	

d.	log 0	e.	$\ln e^{-3}$	f.	$\log_7 \sqrt{7}$
----	-------	----	--------------	----	-------------------

g.
$$\log_{\pi} \pi^{-\sqrt{e}}$$
 h. $\log_3\left(\frac{1}{9}\right)$

Example: Find the domain and vertical asymptotes of the following functions. a. $\ln(3-2x)$ b. $\log_3(x^2-x-6)$ **Example:** Write the following logarithm as a sum of logarithms with no products, powers or quotients.

$$\ln\left[\frac{x^4(x-5)^3}{\sqrt{x+3}}\right]$$

Example: Rewrite the following expression as a single logarithm.

$$3\log_7(x-2) - \frac{1}{5}\log_7(x^2-3) - 4\log_7(x+5) + 1$$

Example: Find $(f \circ g)(x)$ when $f(x) = e^{3x}$ and $g(x) = 5 \ln x$.

Example: Given $f(x) = 5e^{4x-1}$ and $g(x) = \log_2(4x+1)$, find $f^{-1}(5) + g^{-1}(2)$.

Example: Solve for *x*.

$$32^{\frac{x}{2}} = 20$$

Example: Solve for *x*.

$$2^{x-1} = \frac{1}{16}$$

Example: Solve for *x*.

 $\log(4x-1) + 3 = 5$

Example: Solve for *x*.

 $6e^x = 13$

Example: Find any *x*- intercepts of the following function.

$$f(x) = \log_6(x+5) + \log_6 x - \log_5 25$$