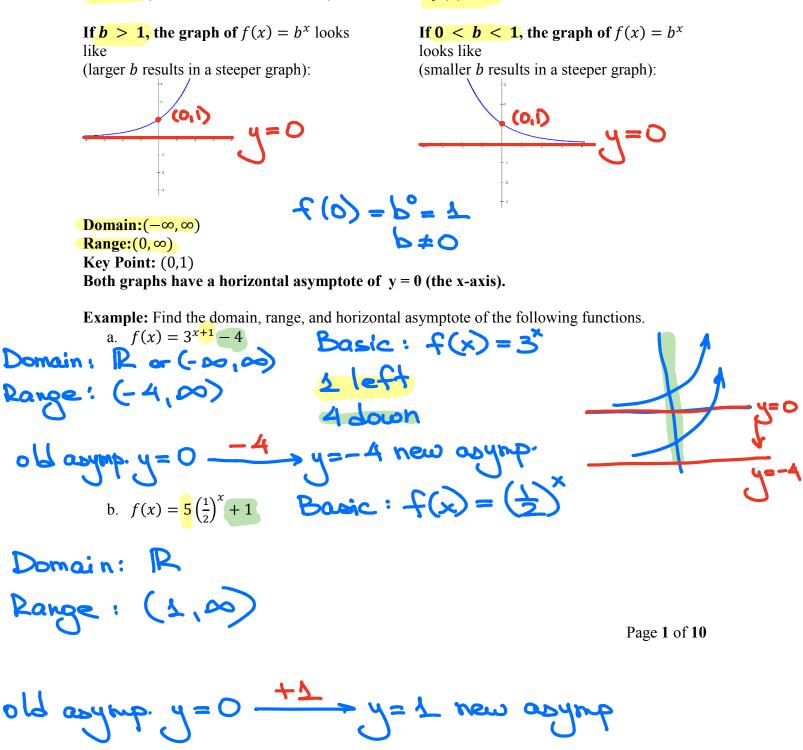
Math 1330 Algebra Review Part 3

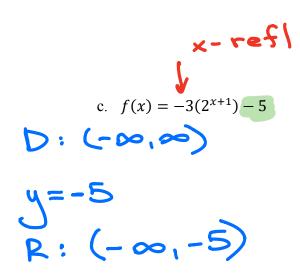
Exponential Functions

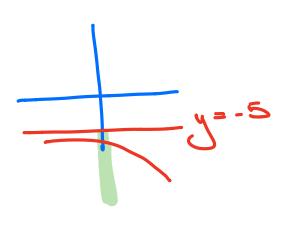
Functions whose equations contain a variable in the exponent are called exponential functions.

The exponential function f with base b is defined by $f(x) = b^x$ (b > 0 and $b \neq 1$) and x is any real number.

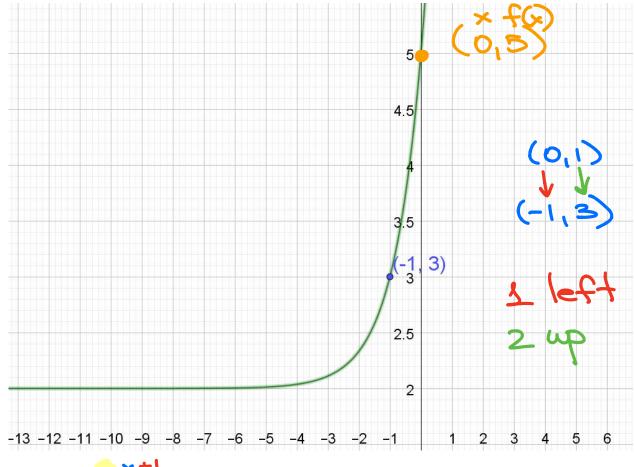
If b = e (the natural base, $e \approx 2.7183$), then we have $f(x) = e^x$.







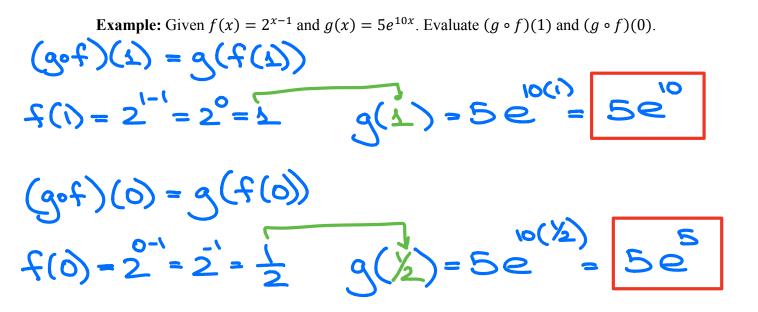
Example: Write an equation of an exponential function with the following graph.



 $f(x) = b^{x+1} + 2$

 $b^{0+1}+2=5$ f(x) = 3b=3

Page 2 of 10



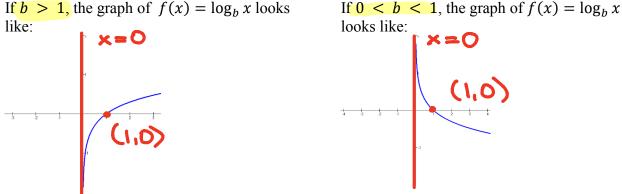
Logarithmic Functions

Exponential functions are one-to-one; therefore, they are invertible. The inverse function of the exponential function with base *b* is called the **logarithmic function with base** *b*.

The function $f(x) = \log_b x$ is the logarithmic function with base *b* with x > 0, b > 0 and $b \neq 1$. Note: The argument (inside) of a logarithmic function must be positive!

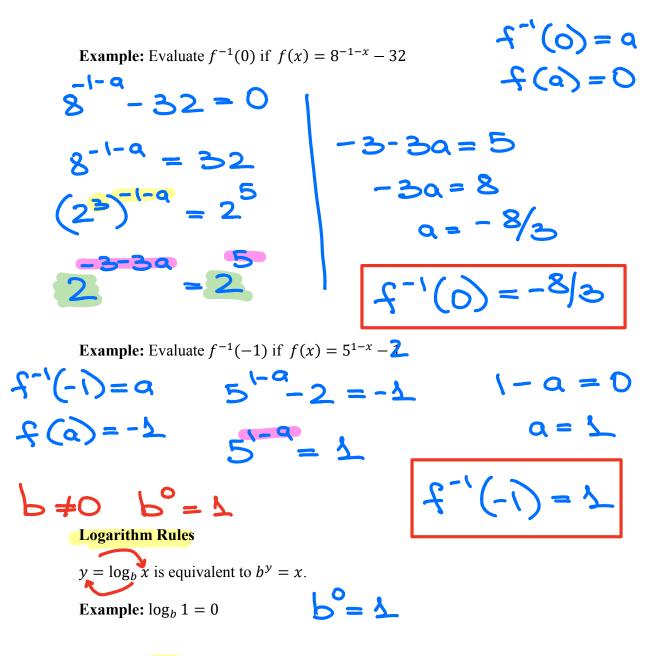
Domain: $(0, \infty)$ **Range:** $(-\infty, \infty)$ **Key Point:** (1,0)

The Graph of a Logarithmic Function



Both graphs have a vertical asymptote of x = 0 (the y-axis).

Page 3 of 10



For $b > 0, b \neq 1, x > 0, y > 0$:

Inverse Property of Logarithms

- 1. $\log_b b^x = x$
- 2. $b^{\log_b x} = x$

The Quotient Rule

$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

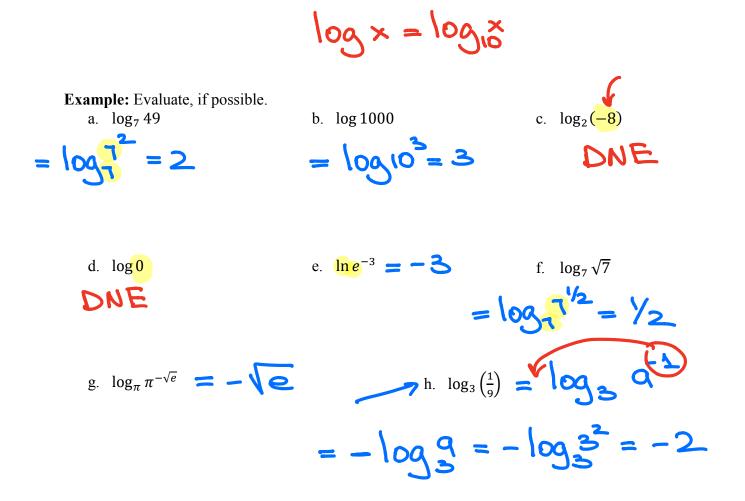
The Product Rule

 $\log_b(xy) = \log_b x + \log_b y$

The Power Rule

$$\int_{\log_b} x y = y \log_b x$$

Page 4 of 10



Example: Find the domain and vertical asymptotes of the following functions. a. ln(3-2x) b. $log_3(x^2-x-6)$

Domain:
$$3-2x \ge 0$$

 $3 \ge 2 \times$
 $3 \ge 2 \times$
 $x \le 3/2$
($-\infty, 3/2$)
V.A. $3-2x = 0$
 $x = 3/2$
 $x = 3$
 $x = 3$
 $x = -2$
($x-3$)($x+2$) ≥ 0
 $x = 3$
 $x = -2$
($x - 3$)($x + 2$) ≥ 0
 $x = 3$
 $x = -2$
($x - 3$)($x + 2$) ≥ 0
 $x = -2$
($x - 3$)($x + 2$) ≥ 0
 $x = -2$
($x - 3$)($x + 2$) ≥ 0
 $x = -2$
 $x = -2$
($x - 3$)($x + 2$) ≥ 0
 $x = -2$
 $x = -2$
 $x = -2$
($x - 3$)($x + 2$) ≥ 0
 $x = -2$
 $x = -2$
Page 5 of 10

Example: Write the following logarithm as a sum of logarithms with no products, powers or quotients.

= $\ln x^{4}(x-5)^{3} - \ln (x+3)^{1/2}$ = $\ln x^{0} + \ln (x-5)^{0} - \ln (x+3)^{0}$ = 4lnx + 3ln (x-5) - 1/2 ln (x+3)

Example: Rewrite the following expression as a single logarithm $3\log_{7}(x-2) - \frac{1}{5}\log_{7}(x^{2}-3) - 4\log_{7}(x+5) + 1$ $= \log_{7}(x-2) - \log_{7}(x^{2}-3) - \log_{7}(x+5) + \log_{7}($ $= \left[\log_{7} (x-2)^{3} + \log_{7} \right] - \left[\log_{7} (x^{2}-3)^{3} + \log_{7} (x+5)^{3} \right]$ $= \log_{7}^{7} (x-2)^{3} - \log_{7}^{5} \sqrt{x^{2}-3} (x+5)^{4}$ $= 109_{7} \frac{7(x-2)^{3}}{5(x^{2}-2)(x+5)^{4}}$ Page 6 of 10

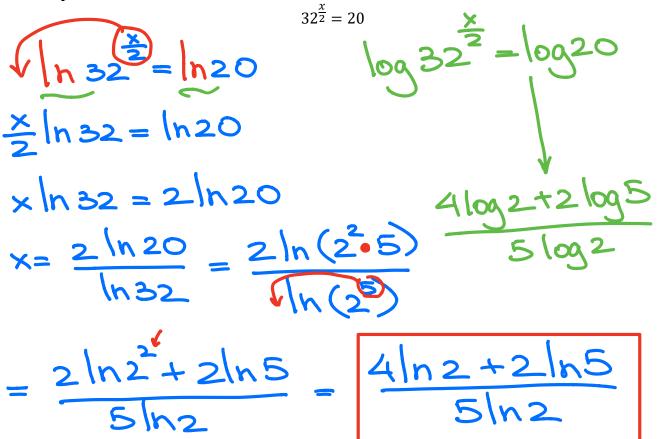
Example: Find
$$(f \circ g)(x)$$
 when $f(x) = e^{3x}$ and $g(x) = 5 \ln x$
 $f(g(x)) = 3(5 \ln x)$
 $= 6 \ln x^{5} = 5 \ln x$

Example: Given
$$f(x) = 5e^{4x-1}$$
 and $g(x) = \log_2(4x + 1)$, find $f^{-1}(5) + g^{-1}(2)$.
 $f^{-1}(5) = a$
 $f(a) = 5$
 $f(a) = 5$
 $g(a) = 2$
 $f(a) = 5$
 $g(a) = 2$
 $g(a)$

Page 7 of 10

Inx=log×

Example: Solve for *x*.



Example: Solve for *x*.

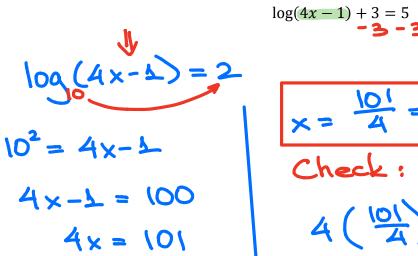
$$2^{x-1} = \frac{1}{16}$$

$$2^{x-1} = \frac{1}{2^{4}}$$

 $\begin{array}{c} x - 4 = -4 \\ x = -3 \end{array}$

Page 8 of 10

Example: Solve for *x*.



$$x = \frac{101}{4} = 25.25$$

Check: 4x-1>0
 $4\left(\frac{101}{4}\right) - 1 > 0$

Example: Solve for *x*.

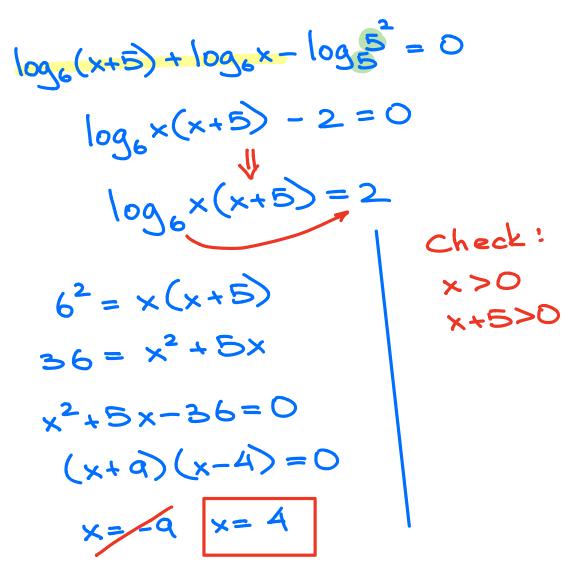
 $6e^x = 13$

$$\ln e^{x} = \ln \frac{13}{6}$$

$$x = \ln \frac{13}{6} = \ln 13 - \ln 6$$

Example: Find any *x*- intercepts of the following function.

$$f(x) = \log_6(x+5) + \log_6 x - \log_5 25$$



Page 10 of 10