Section 6.2 Double-Angle and Half-Angle Formulas

Double-Angle Formulas

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$cos(2\theta) = 2cos^{2} \theta - 1$$
$$cos(2\theta) = 1 - 2sin^{2} \theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$

Example 1: Suppose
$$\csc \theta = -\frac{5}{4}$$
 and $\pi < \theta < \frac{3\pi}{2}$.

a. Find $\sin(2\theta)$.

Recall: $\sin(2\theta) = 2\sin\theta\cos\theta$

b. Find $cos(2\theta)$.

Recall:
$$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$$

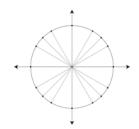
Half-Angle Formulas

$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}} \qquad \qquad \cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos\theta}{2}} \qquad \qquad \tan\left(\frac{\theta}{2}\right) = \frac{\sin\theta}{1+\cos\theta}$$

Note: In the half-angle formulas the \pm symbol is intended to mean either positive or negative but not both, and the sign before the radical is determined by the quadrant in which the angle $\frac{\theta}{2}$ terminates.

c. Find
$$\cos\left(\frac{\theta}{2}\right)$$
. Recall: $\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1+\cos\theta}{2}}$ and $\pi < \theta < \frac{3\pi}{2}$

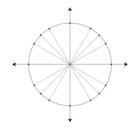
d. Find
$$\sin\left(\frac{\theta}{2}\right)$$
. $Recall: \sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1-\cos\theta}{2}}$ and $\pi < \theta < \frac{3\pi}{2}$


Example 2: Use the half-angle formula to calculate $\sin\left(\frac{5\pi}{12}\right)$. Recall: $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$

- a. Which quadrant does $\frac{5\pi}{12}$ live in?
- b. Is $\sin\left(\frac{5\pi}{12}\right)$ positive or negative?

c. Rewrite $\sin\left(\frac{5\pi}{12}\right)$ so that it's in the form $\sin\left(\frac{\theta}{2}\right)$ and then calculate.

What does θ equal?


Example 3: Use the half-angle formula to calculate $\cos\left(\frac{13\pi}{8}\right)$. Recall: $\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos\theta}{2}}$

- a. Which quadrant does $\left(\frac{13\pi}{8}\right)$ live in?
- b. Is $\cos\left(\frac{13\pi}{8}\right)$ positive or negative?

c. Rewrite $\cos\left(\frac{13\pi}{8}\right)$ so that it's in the form $\cos\left(\frac{\theta}{2}\right)$ and then calculate.

What does θ equal?

