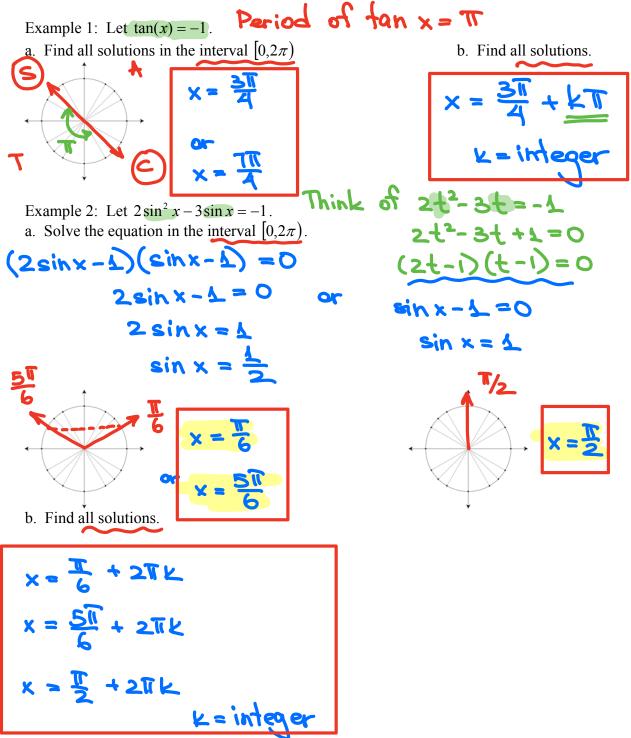
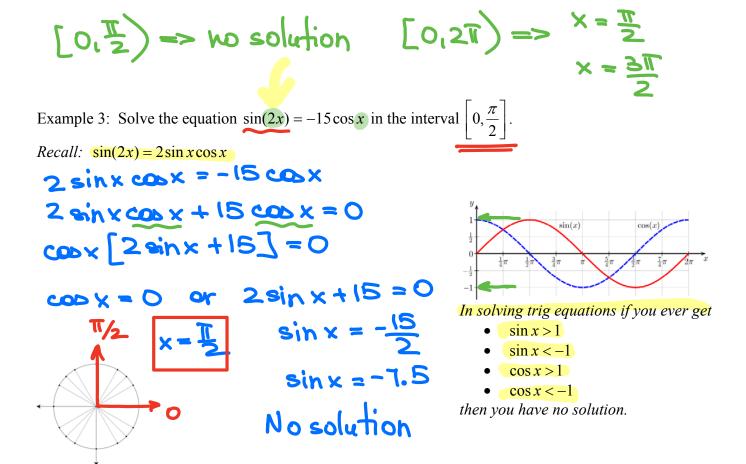
Section 6.3 Solving Trigonometric Equations

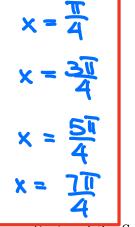
An equation that contains a trigonometric expression is called a **trigonometric equation**. As we know trigonometric functions repeat their behavior. What if we wanted answers to questions like: "When will the moon look exactly like it did last night at 9:30pm?" and "When will my breathing be exactly as it is right now?". The questions to these models can be answered by solving trigonometric equations.



Section 6.3 – Solving Trigonometric Equations

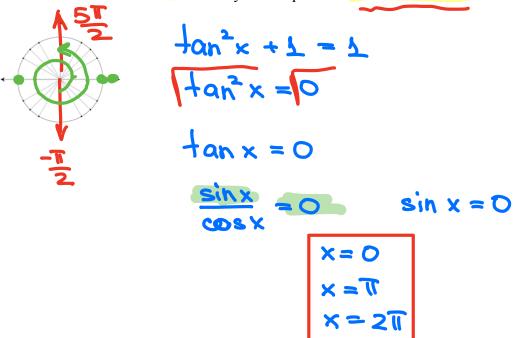


Try this one: Solve the equation $10\sin^2 x = 10\cos^2 x$ in the interval $[0,2\pi)$. Recall: $\sin^2 x + \cos^2 x = 1$ $\sin^2 x = 4 - \cos^2 x$ $\sin^2 x - \cos^2 x = 0$ $4 - \cos^2 x - \cos^2 x = 0$ $4 - 2\cos^2 x = 0$ $4 = 2\cos^2 x$ $\cos^2 x = \frac{1}{2}$ $x = \frac{1}{4}$ $x = \frac{1}{4}$ x

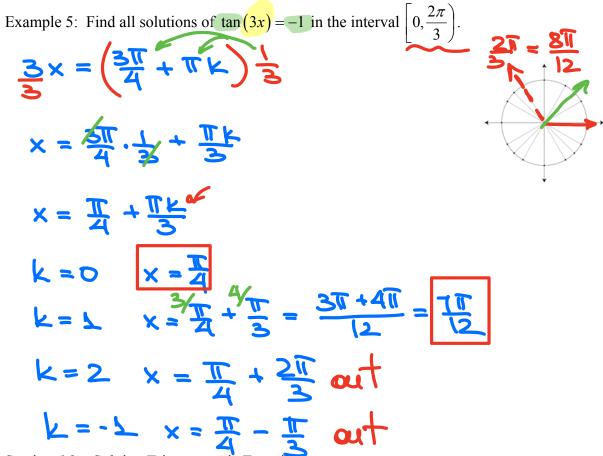


Section 6.3 – Solving Trigonometric Equations

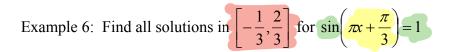
Example 4: Find all solutions of $\sec^2 x = 1$ in the interval $\left[-\frac{\pi}{2}, \frac{5\pi}{2} \right]$. *Recall:* $\sin^2 x + \cos^2 x = 1$ divided by $\cos^2 x$ produces $\tan^2 x + 1 = \sec^2 x$



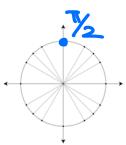
Equations Involving Multiples of an Angle



Section 6.3 – Solving Trigonometric Equations



 $\frac{\pi \times + \frac{\pi}{2}}{2} = \frac{\pi}{2} + 2\pi k$



$$T \times = \frac{312}{3 \cdot 2} - \frac{211}{2 \cdot 3} + 2TK$$

$$T \times = \frac{3T - 2T}{6} + 2TK$$

$$T \times = \left(\frac{T}{6} + 2TK\right) + \frac{1}{7}$$

$$x = \frac{1}{6} + 2k \quad k = int \quad \left[-\frac{1}{3}, \frac{2}{3}\right] = \left[-\frac{2}{6}, \frac{4}{6}\right]$$

$$k = 0 \quad x = \frac{1}{6}$$

$$k = 1 \quad x = \frac{1}{6} + 2 \quad out$$

$$k = -1 \quad x = \frac{1}{6} - 2 = \frac{1}{6} - \frac{12}{6} = -\frac{11}{6} \quad out$$

Try these:
1. Find all solutions of
$$\frac{1}{2} \left[\frac{1}{2} \right]_{\frac{1}{2}}^{\frac{1}{2}}$$
 in the interval $\left[-\pi, \pi \right]$.

$$\frac{\sin \left(\frac{1}{2} \right)}{2} = \frac{1}{2}$$
Think of $\sin \left(\frac{1}{2} \right) = \frac{1}{2}$

$$\frac{\sin \left(\frac{1}{2} \right)}{2} = \frac{1}{2}$$
Think of $\sin \left(\frac{1}{2} \right) = \frac{1}{2}$

$$\frac{1}{2} = \frac{1}{6} + 2\pi k \right) 2$$

$$x = \frac{1\pi}{5} + 4\pi k \qquad x = 0 \qquad x = \frac{1\pi}{5} \quad x = 1 \qquad x = \frac{1\pi}{5} + 4\pi k \qquad x = 1 \qquad x$$

II. Find all solutions in $\left[0, \frac{\pi}{2}\right]$ for $2\cos\left(2x - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$	$\cos\left(2\times-\frac{\pi}{6}\right)=\frac{\pi}{2}$
$2 \times -\frac{\pi}{6} = \frac{\pi}{6} + 2\pi k$	$\cos\left(\right) = \frac{F_2}{2}$
	$2x - \frac{\pi}{6} = \frac{\pi}{6} + 2\pi k$
$\frac{2 \times = \left(\frac{\pi}{3} + 2\pi k\right) \frac{1}{2}$	$2 \times = \frac{11\pi}{6} + \frac{\pi}{6} + 2\pi k$
$\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$	
$X = \frac{\pi}{6} + \pi k$	$2 \times = \frac{12\pi}{6} + 2\pi k$
$k = 0 x = \frac{\pi}{6}$	$2x = 2\pi + 2\pi k$
$k = L x = \frac{\pi}{6} + \pi \text{ out}$	$X = \pi + \pi k$
$k = -L x = \frac{\pi}{6} - \pi$ out	$k = 0 x = \pi \text{out}$
6	$k=1 \times T+T$
	$k = -1 \times = \pi - \pi = \lambda$
Solutions : x=	$\frac{T}{6}$, X=O

Over
$$[0,2\overline{1}]$$
, how many values of x
can be found satisfying this equation?
e) $\sin(x) = \frac{1}{2}$ 2
b) $\cos(x) = -1$ A
cos $(x) = -1$ A
cos $(x) = 5$ 0
cos $(x) = \frac{5}{4}$
d) $6\sin(4x) + 1 = 5$
 $6\sin(4x) = 4$
 $\sin(4x) = \frac{4}{5}$ Period $= \frac{2\overline{11}}{B} = \frac{2\overline{11}}{4} = \frac{\overline{11}}{2}$
 $\sin(4x) = \frac{2}{5}$ $\sin(x) = \frac{2}{3} - 2 \operatorname{sol}$.
B solutions

e)
$$4 \cos^{2}(2x) - 1 = 1$$

 $4 \cos^{2}(2x) = 2$
 $1 \cos^{2}(2x) = \frac{1}{2}$
 $\cos^{2}(2x) = +\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
 $\cos(2x) = +\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
 $\begin{bmatrix} 0, 2\pi \end{bmatrix}$
 $2 \times 2 = 4$
 $4 = \frac{4}{\sqrt{2}}$
8 solutions.