Section 7.2 Area of a Triangle

Area of a triangle

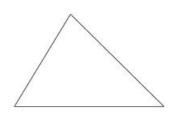
Given the base, *b*, and the height, *h*, of a triangle we can calculate its area by applying the formula: $A = \frac{1}{2}bh$

Example 1: Find the area of triangle ABC, where $m \angle C = 90^\circ$, a = 3mm and c = 11mm.

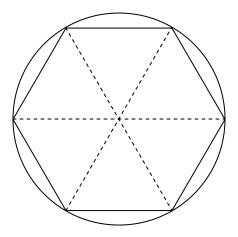
If we are not given the base and the height of the triangle, but given two sides and the angle *between* them then we can still calculate its area by applying the

formula: $A = \frac{1}{2}ab\sin\theta$

Example 2: Find the area of the equilateral triangle with side lengths 10 ft.


Example 3: Find the area of triangle JAK with angle $K = 91^{\circ}$, angle $J = 28^{\circ}$, k = 266 m, and j = 125 m.

Try this one: Find the area of triangle ABC with angle $C = 45^{\circ}$, a = 5 cm and b = 8 cm.


Example 4: If the area of $\triangle ABC$ is 20 square centimeters, a = 16 cm and c = 5 cm, find all possible measures for angle B.

Try this one: If the area of triangle ABC is 14 square meters, with a = 15 m and b = 6 m, find all possible measures for angle C. Round answers to the nearest hundredth.

Try this one: In \triangle ABC, the measure of $\angle A = (2x)^{\circ}$, c = 5 in, $b = \frac{\sqrt{6}}{4}$ in and $\sin x = \frac{1}{5}$. Find the area of \triangle ABC. *Hint: The double angle formula for sine will be useful.* $\sin(2x) = 2\sin x \cos x$

Example 5: A regular hexagon is inscribed in a circle of radius 4m. Find the area of the hexagon.

Section 7.2 – Area of a Triangle