Section 8.3 Hyperbolas

A hyperbola is the set of all points, the difference of whose distances from two fixed points is constant. Each fixed point is called a **focus** (plural = foci). The **focal axis** is the line passing through the foci.

Basic "Vertical" Hyperbola (center is at the origin):

To graph a hyperbola with center at the origin:

- Rearrange the equation into the form $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ or $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1$.
- If the x^2 is positive, it's horizontal. If the y^2 is positive, it's vertical.
- Use the square root of the number under x^2 to determine how far to measure in x-direction from the center.
- Use the square root of the number under y^2 to determine how far to measure in ydirection from the center.
- Draw a rectangle with these measurements. Then draw two diagonals through the center, from one corner of the rectangle to the opposite corner. These are the asymptotes.
- Use the dimensions of the rectangle to determine the slopes of the asymptotes and write their equations.
- Put the vertices at the edge of the box on the correct axis. Then draw a hyperbola, making sure it approaches the asymptotes smoothly.
- Find the foci. Formula: $c^2 = a^2 + b^2$ where a^2 and b^2 are the denominators. The foci are located *c* units from the center, on the same axis as the vertices.

For hyperbolas: In the formulas at the top, "a" is associated with the POSITIVE TERM! Example 1: Given the hyperbola in standard form $\frac{x^2}{36} - \frac{y^2}{4} = 1$, sketch its graph and state each of the following features listed below.

Orientation:

Recall: For hyperbolas, "a" is associated with the positive term.

Next, draw the hyperbola.

Asymptotes:

Length of the Transverse Axis:

Foci Formula: $c^2 = a^2 + b^2$

Length of the Conjugate Axis:

Coordinates of the Transverse Axis:

Coordinates of the Conjugate Axis:

3

Vertices:

ι.				+					
				3^{y}					
_	_	_		2		_		_	
_	-	_		1	_	-		-	r
-8	-6	-4	-2		2	4	6	8	,
				-1					
				-2					
				-3					

x-direction:

y-direction:

Center:

vertices

Foci:

To graph a hyperbola with center not at the origin:

- Rearrange the equation into the form $\frac{(x-h)^2}{a^2} \frac{(y-k)^2}{b^2} = 1$ or $\frac{(y-k)^2}{a^2} \frac{(x-h)^2}{b^2} = 1$
- Start at the center (h,k) and then graph it as before.
- To write down the equations of the asymptotes, start with the equations $y = \pm mx$ and replace x with x h and replace y with y k.

Example 2: Write $y^2 - 25x^2 + 8y - 9 = 0$ in standard form. Sketch its graph and state each of the following features listed below.

Orientation:

Center:

Recall: For hyperbolas, "a" is associated with the positive term.

x-direction:

y-direction:

Asymptotes:

Vertices:

Foci Formula: $c^2 = a^2 + b^2$

Foci:

Length of the Transverse Axis:

Coordinates of the Transverse Axis:

Length of the Conjugate Axis:

Coordinates of the Conjugate Axis:

Example 3: Use the given features to answer the following questions. Center: (6, 8)Length of transverse axis = 16 Length of conjugate axis = 6 Horizontal transverse axis

a. Which of the following equations will model the hyperbola?

A.
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
 B. $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$

b. Write an equation for the hyperbola in standard form.