Math 2312 Vectors

Quantities that involve BOTH a magnitude and a direction are called **vectors**.

Quantities that involve magnitude, but no direction are called scalars.

Example: You are driving south at 55 miles per hour. The magnitude is the speed of your car and the direction is south.

Geometrically, a vector is a directed line segment, i.e. a line segment that has an **initial point** and a **terminal point**.

Magnitude is the length of a vector \vec{u} and given by $\|\vec{u}\| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$, where (x_1, y_1) and (x_2, y_2) are the initial and the terminal points of a vector.

Example: Let vector \vec{u} be a vector with initial point (-4, -1) and a terminal point (-1, 2), find the magnitude of this vector.

Unit Vectors and Representing Vectors in Rectangular Coordinates

Vector \vec{i} is the unit vector whose direction is along the positive x-axis. Vector \vec{j} is the unit vector whose direction is along the positive y-axis. Vectors in the rectangular coordinate system can be represented in terms of \vec{i} and \vec{j} .

Vector \vec{v} , from (0,0) to (*a*, *b*), is represented as $\vec{v} = a\vec{i} + b\vec{j}$, where

- *a* is the horizontal component of \vec{v} , and
- *b* is the vertical component of \vec{v} .

The magnitude of $\vec{v} = a\vec{i} + b\vec{j}$ is equal to $\sqrt{a^2 + b^2}$.

Example: Find the magnitude of a vector $\vec{u} = 2\vec{i} - 3\vec{j}$.

Vector \vec{v} with initial point $P_1 = (x_1, y_1)$ and terminal point $P_2 = (x_2, y_2)$ is equal to the position vector $\vec{v} = (x_2 - x_1)\vec{i} + (y_2 - y_1)\vec{j}$.

Example: Let \vec{v} be a vector from initial point (-8,6) to terminal point (-2, 3). Write \vec{v} in terms of \vec{i} and \vec{j} .

Example: Let \vec{v} be a vector from initial point (-3,4) to terminal point (6,4). Find the vertical and the horizontal component of this vector.

Vertical component:

Horizontal component:

Operations with Vectors

If vectors are expressed in terms of \vec{i} and \vec{j} , we can easily carry out operations such as vector addition, vector subtraction, and scalar multiplication.

If $\vec{u} = a\vec{i} + b\vec{j}$ and $\vec{v} = c\vec{i} + d\vec{j}$, then

- $\vec{u} + \vec{v} = (a+c)\vec{\iota} + (b+d)\vec{j}$
- $\vec{u} \vec{v} = (a c)\vec{i} + (b d)\vec{j}$
- $k\vec{u} = (ka)\vec{\iota} + (kb)\vec{j}$

If k is a real number and \vec{u} , the vector $k\vec{u}$ is called a scalar multiple of the vector \vec{u} . Multiplying a vector by any positive real number other than 1 changes its magnitude, but not its direction.

Multiplying a vector by any negative real number other than -1 changes its magnitude, AND its direction.

The magnitude of $k\vec{u}$ is $|k| \parallel \vec{u} \parallel$.

Example: If $\vec{u} = 2\vec{i} + 3\vec{j}$ and $\vec{v} = -\vec{i} - 4\vec{j}$, find

a. $\vec{u} + \vec{v}$

b. $\vec{u} - \vec{v}$

c. $3\vec{u} - 2\vec{v}$

Unit Vectors

A **unit vector** is a vector whose magnitude is one.

In many applications it is useful to find the unit vector that has the same direction as a given vector.

For any nonzero vector \vec{v} , the vector $\frac{\vec{v}}{\|\vec{v}\|}$ is the unit vector that has the same direction as \vec{v} .

To find this vector, divide \vec{v} by its magnitude.

Example: Find the unit vector in the same direction as $\vec{v} = 4\vec{i} + 3\vec{j}$.

A Vector in Terms of Its Magnitude and Direction

The components a and b of the vector $\vec{v} = a\vec{i} + b\vec{j}$ can be expressed in terms of the magnitude of \vec{v} and the angle θ it makes with the positive x-axis.

$$\vec{v} = a\vec{i} + b\vec{j} = \|\vec{v}\| \cos\theta\vec{i} + \|\vec{v}\| \sin\theta\vec{j}$$

 θ is called the **direction angle**.

Example: Write the vector \vec{v} in terms of \vec{i} and \vec{j} if its magnitude and direction angle are given. $\|\vec{v}\| = 5, \theta = 60^{\circ}$.

Example: Given the vector $\vec{v} = -3\vec{\iota} + 3\sqrt{3}\vec{j}$, find the direction angle.

The Dot Product of Two Vectors

If $\vec{u} = a\vec{i} + b\vec{j}$ and $\vec{v} = c\vec{i} + d\vec{j}$, then the dot product of $\vec{u} \cdot \vec{v} = ac + bd$.

The dot product of two vectors is the sum of the products of their horizontal components and vertical components.

The result of vector addition and scalar multiplication is a vector. The result of the dot product is a SCALAR (a real number).

Example: If $\vec{u} = 2\vec{i} + 3\vec{j}$ and $\vec{v} = -\vec{i} - 4\vec{j}$, find $\vec{u} \cdot \vec{v}$.

Properties of Dot Product

- 1. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $2. \quad \vec{0} \cdot \vec{v} = 0$
- 3. $\vec{v} \cdot \vec{v} = \parallel \vec{v} \parallel^2$

- 4. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ 5. $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (c\vec{v})$
- non-negative angle between vectors \vec{u} and \vec{v} .

Alternative Formula for the Dot Product: $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$, where θ is the smallest

Formula for the Angle between Two Vectors: $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$ and $\theta = \cos^{-1} \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \right)$. Example: If $\vec{u} = -3\vec{i} + 4\vec{j}$ and $\vec{v} = 5\vec{i} + 12\vec{j}$, find the angle between \vec{u} and \vec{v} .

Parallel and Orthogonal Vectors

Two vectors are **parallel** when the angle θ between the vectors is 0° or 180°.

If $\theta = 0^{\circ}$, the vectors point in the same direction.

If $\theta = 180^{\circ}$, the vectors point in opposite directions.

Two vectors are orthogonal when the angle between them is 90° .

Two nonzero vectors are orthogonal if and only if $\vec{u} \cdot \vec{v} = 0$.

Example: Are the vectors $\vec{u} = 2\vec{i} + 3\vec{j}$ and $\vec{v} = 12\vec{i} - 8\vec{j}$ orthogonal?

Example: Determine if $\vec{u} = 3\vec{i} - 5\vec{j}$ and $\vec{v} = 6\vec{i} - 10\vec{j}$ are parallel, orthogonal, or neither.

Example: Given vectors (2,3) and (-4, x) are orthogonal, determine the value of x.