Section 4.1 – Inverse Functions

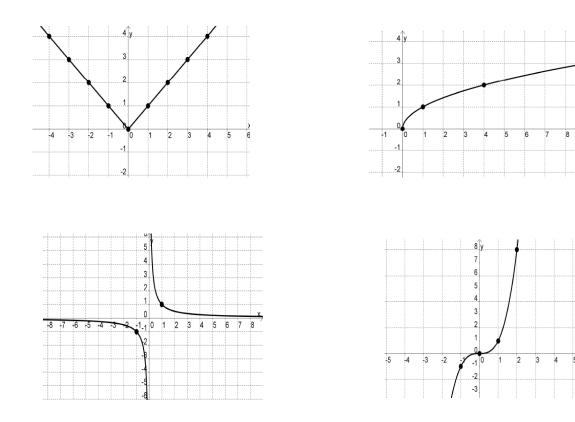
A function is said to be **one-to-one** (1-1) if there are no two distinct numbers in the domain of *f* that produce the same value.

If
$$f(x_1) = f(x_2)$$
, then $x_1 = x_2$.

In other words, two different *x* values cannot have the same *y* value.

Given a function whose graph is known or given the graph of a function, we can use the Horizontal Line Test to determine if the function is 1-1.

Example 1: Which of these functions are one-to-one?



Using the definition to prove a function is 1-1 or not

A function is said to be **one-to-one** (1-1) if there are no two distinct numbers in the domain of *f* that produce the same value.

If
$$f(x_1) = f(x_2)$$
, then $x_1 = x_2$.

Example 2: Prove that $f(x) = (x + x^2)^7$ is *not* one-to-one?

Example 3: Prove that $f(x) = \sqrt[3]{4x - 3} + 2$ is 1-1.

If a function is 1-1, then it has an inverse function, denoted as f^{-1} , which reverses what the first function did.

Definition: Let f be a one-to-one function. There exists a unique function f^{-1} , called the inverse of f, such that for each x in the domain of f:

$$f^{-1}(f(x)) = x.$$

The domain of *f* is the range of f^{-1} and the range of *f* is the domain of f^{-1} .

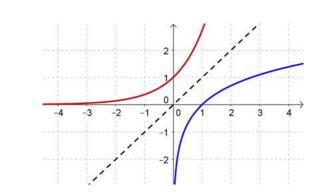
How are functions related to their inverses?

Algebraically

Geometrically

If
$$f(a) = b$$
, then $f^{-1}(b) = a$

If (a, b) is a point on the graph of f(x), then (b, a) is a point on the graph of $f^{-1}(x)$.



How to check if two functions are inverses of each other?

Let *f* and *g* be two functions such that $(f \circ g)(x) = x$ for every *x* in the domain of *g* and $(g \circ f)(x) = x$ for every *x* in the domain of *f*, then *f* and *g* are inverses of each other.

An example of real life inverse function is: The formula $f(x) = \frac{9}{5}x + 32$ is used to convert from x degrees Celsius to y degrees Fahrenheit.

The formula $g(x) = \frac{5}{9}(x - 32)$ is used to convert from *x* degrees Fahrenheit to *y* degrees Celsius.

Verify $f(x) = \frac{9}{5}x + 32$ and $g(x) = \frac{5}{9}(x - 32)$ are inverses of each other.

So we need to check to see if: $(f \circ g)(x) = x$ AND $(g \circ f)(x) = x$.

1.
$$(f \circ g)(x)$$

2. $(g \circ f)(x)$

How do we find the formula for the inverse of a function?

- 1. Replace f(x) by y.
- 2. Exchange *x* and *y*.
- 3. Solve for *y*. 4. Replace *y* by $f^{-1}(x)$.

Example 3 (cont'd): Find the equation of the inverse for $f(x) = \sqrt[3]{4x - 3} + 2$.

Sometimes it is too long or too difficult to find the equation of the inverse, yet we may want to know if a function has an inverse or not.

Definition: A function is **monotonic** if it is always increasing or always decreasing on its domain.

Recall:

- If f'(x) > 0 on its domain, then f is increasing and; hence, monotonic.
- If f'(x) < 0 on its domain, then *f* is decreasing and; hence, monotonic.

Theorem: If *f* is monotonic, then *f* is an invertible function.

Example 4: Is the following function 1-1?

a. $f(x) = x^3 + 3x$

b.
$$f(x) = \frac{x-1}{x+1}$$

Example 5: Let $f(x) = \frac{1}{3}x^3 - x^2 + kx$. For what values of k is f(x) invertible?

Finding the derivative of the inverse function

Theorem: If f(x) is continuous and invertible then $f^{-1}(x)$ is continuous.

Theorem: If f(x) is differentiable (so must be continuous) and invertible, and $f^{-1}(x) \neq 0$, then $f^{-1}(x)$ is differentiable.

If f(a) = b and $f'(a) \neq 0$, then $(f^{-1})'(b) = \frac{1}{f'(a)}$.

Example 6: For $f(x) = x^3$, we know that f(2) = 8. Find $(f^{-1})'(8)$.

Example 7: If *f* is invertible and f(1) = 2, f(3) = 1, f'(1) = 4, f'(3) = 5, f'(2) = 6, find $(f^{-1})'(1)$.

Example 8: Given $f(x) = x^5 + 1$, find $(f^{-1})'(33)$ if possible.

Example 9: If $f(x) = \sin x + 5 \cos x$, $x \in \left[0, \frac{\pi}{2}\right]$, find $(f^{-1})'(3\sqrt{2})$.

Example 10: Let $f(x) = x^5 + 2x^3 + 2x$. The point (-5, -1) is on the graph of $f^{-1}(x)$. Find

 $(f^{-1})'(-5)$, then give an equation for the tangent line to the graph of $f^{-1}(x)$ at the point (-5, -1).