PRINTABLE VERSION

Quiz 14

You scored 100 out of 100

Question 1

Your answer is CORRECT.

State the type of hypothesis test to be used in the following situation:

Hippocrates magazine states that 37 percent of all Americans take multiple vitamins regularly. Suppose a researcher surveyed 750 people to test this claim and found that 290 did regularly take a multiple vitamin. Is this sufficient evidence to conclude that the actual percentage is different from 37%?

$$H_0: P = .37 \qquad P = \frac{290}{750}$$

- (a) One Sample Z Test for Proportions
- Ha: p ≠ . 37

b) \circ χ^2 Goodness of Fit Test

One sample 2 test

- c) Two Sample T Test for Means
- d) \circ χ^2 Test for Independence
- e) Matched Pairs T Test
- f) One Sample T Test for Means
- **g)** Two Sample Z Test for Proportions
- **h)** One Sample Z Test for Means

Question 2

Your answer is CORRECT.

State the type of hypothesis test to be used in the following situation:

Solid fats are more likely to raise blood cholesterol levels than liquid fats. Suppose a nutritionist analyzed the percentage of saturated fat for a sample of 6 brands of stick margarine (solid fat) and for a sample of 6 brands of liquid margarine and obtained the following results:

Stick	25.8	26.9	26.2	25.3	26.7	26.1
Liquid	16.9	17.4	16.8	16.2	17.3	16.8

find X1 X2 S1 S2 Statistic (2 sample) Is there a significant difference in the average amount of saturated fat in solid and liquid fats? Assume the population is normally distributed.

no known pop sd => use t*

- (a) Two Sample T Test for Means
- **b)** $\bigcirc \chi^2$ Goodness of Fit Test
- c) Two Sample Z Test for Proportions
- d) $\propto \chi^2$ Test for Independence
- e) Matched Pairs T Test
- f) One Sample T Test for Means
- **g)** One Sample Z Test for Proportions
- **h)** One Sample Z Test for Means

Question 3

Your answer is CORRECT.

State the type of hypothesis test to be used in the following situation:

In a certain city, there are about one million eligible voters. A simple random sample of size 10,000 was chosen to study the relationship between gender and participation in the last election. The results were:

	Men	Women
Voted	2792	3591
Didn't Vote	1486	2131

4278 5722

Ho: $P_1 = P_2$ two sample

Ha: $P_1 \neq P_2$ 2-test

Is there a difference in the proportion of men who voted and women who voted?

- a) One Sample Z Test for Proportions
- **(b)** Two Sample Z Test for Proportions
- c) $\propto \chi^2$ Test for Independence
- d) Matched Pairs T Test
- e) One Sample T Test for Means

f) Two Sample T Test for Means

g) One Sample Z Test for Means

h) \circ χ^2 Goodness of Fit Test

Ouestion 4

Your answer is CORRECT.

In a certain city, there are about one million eligible voters. A simple random sample of size 10,000 was chosen to study the relationship between gender and participation in the last election. The results were:

	Men	Women
Voted	2633	3499
Didn't Vote	1444	2424

If we are testing for a relationship between gender and participation in the last election, what is the test statistic?

	row1=c(2633,3499) > row2=c(1444,2424)
a) $\Omega \chi^2 = 24.438$	<pre>> data.table=rbind(row1,row2) > data.table [,1] [,2]</pre>
b) \bigcirc z = -13.340	row1 2633 3499 row2 1444 2424 > chisq.test(data.table)
c)	Pearson's Chi-squared test with Yates' continuity
d) \bigcirc z = -17.682	correction
e) $\chi^2 = 46.314$	data: data.table X-squared = 30.645, df = 1, p-value = 3.099e-08

Question 5

Your answer is CORRECT.

In a certain city, there are about one million eligible voters. A simple random sample of size 10,000 was chosen to study the relationship between gender and participation in the last election. The results were:

	Men	Women
Voted	2555	3544
Didn't Vote	1566	2335

If we are testing for a relationship between gender and participation in the last election, what is the p-value and decision at the 5% significance level? Select the [p-value, Decision to Reject (RH_0) or Failure to Reject (RH_0)]

a) \circ [p-value = 0.083, FRH0]

b) \bigcirc [p-value = 0.391, RH0]

c) \bigcirc [p-value = 0.083, RH0]

d) \bigcirc [p-value = 0.391, FRH0]

e) \bigcirc [p-value = 0.042, RH0]

row1=c(2555,3544) > row2=c(1566,2335) > data.table=rbind(row1,row2)

> data.table

[,1] [,2] row1 2555 3544 row2 1566 2335

> data.table=rbind(row1,row2)

> chisq.test(data.table)

Pearson's Chi-squared test with Yates' continuity

correction

data: data.table

X-squared = 2.9308, df = 1, p-value = 0.0869

Question 6

Your answer is CORRECT.

The Blue Diamond Company advertises that their nut mix contains (by weight) 40% cashews, 15% Brazil nuts, 20% almonds and only 25% peanuts. The truth-in-advertising investigators took a random sample (of size 20 lbs) of the nut mix and found the distribution to be as follows: 6 lbs of Cashews, 5 lbs of Brazil nuts, 8 lbs of Almonds and 1 lbs of Peanuts. At the 0.05 level of significance, is the claim made by Blue Diamond true?

Select the [p-value, Decision to Reject (RH $_0$) or Failure to Reject (FRH $_0$)].

a) \bigcirc [p-value = 0.003, FRH0]

chisq.test(c(6,5,8,1),p=c(.40,.15,.20,.25)) Chi-squared test for given probabilities

b) • [p-value = 0.029, RH0]

data: c(6, 5, 8, 1) X-squared = 9.0333, df = 3, p-value = 0.02885

c) \bigcirc [p-value = 0.014, RH0]

d) \bigcirc [p-value = 0.029, FRH0]

e) \bigcirc [p-value = 0.003, RH0]

Question 7

Your answer is CORRECT.

Quart cartons of milk should contain at least 32 ounces. A sample of 20 cartons contained the following amounts in ounces. Does sufficient evidence exist to conclude the mean amount of milk in cartons is less than 32 ounces at the 5% significance level?

The data is: (32.8, 27.4, 27.8, 31.1, 28.5, 28.3, 32.3, 32.6, 32.3, 32.3, 28.6, 27.6, 28.2, 32.1, 32.6, 32.3, 28.6, 31.6, 31.5, 31.6)

Select the [p-value, Decision to Reject (RH $_0$) or Failure to Reject (FRH $_0$)].

num7=c(32.8,27.4,27.8,31.1,28.5,28.3,32.3,32.6,32.3,32.3,28. 6,27.6,28.2,32.1,32.6,32.3,28.6,31.6,31.5,31.6)

a) \circ [p-value = 0.998, FRH0]

> mean(num7) [1] 30.505 > sd(num7) [11 2.052848

b) \bigcirc [p-value = 0.001, RH0]

c) \circ [p-value = 0.002, RH0]

d) \bigcirc [p-value = 0.998, RH0]

e) \circ [p-value = 0.002, FRH0]

Question 8

Your answer is CORRECT.

Hippocrates magazine states that 34 percent of all Americans take multiple vitamins regularly. Suppose a researcher surveyed 750 people to test this claim and found that 273 did regularly take a multiple vitamin. Is this sufficient evidence to conclude that the actual percentage is different from 34% at the 5% significance level?

Select the [p-value, Decision to Reject (RH₀) or Failure to Reject (FRH₀)].

a) p-value = 0.165, RH0]

b) \bigcirc [p-value = 0.083, FRH0]

c) [p-value = 0.083, RH0]

d) • [p-value = 0.165, FRH0]

e) \bigcirc [p-value = 0.215, FRH0]

Question 9

Your answer is CORRECT.

A national computer retailer believes that the average sales are greater for salespersons with a college degree. A random sample of 35 salespersons with a degree had an average weekly sale of \$3666 last year, while 32 salespersons without a college degree averaged \$3344 in weekly sales. The standard deviations were \$468 and \$642 respectively. Is there evidence at the 5% level to support the retailer's belief?

Select the [p-value, Decision to Reject (RH_0) or Failure to Reject (FRH_0)].

a) \bigcirc [p-value = 0.015, RH0]

b) \bigcirc [p-value = 0.007, RH0]

c) [p-value = 0.013, RH0]

d) \bigcirc [p-value = 0.013, FRH0]

e) \bigcirc [p-value = 0.015, FRH0]

Question 10

Your answer is CORRECT.

The community hospital is studying its distribution of patients. A random sample of 320 patients presently in the hospital gave the following information:

Type of Patient	Old Rate of Occurrences	Present Number of Occurrences	
Maternity Ward	20%	75	
Cardiac Ward	32%	95	
Burn Ward	10%	30	
Children's Ward	15%	47	
All Other Wards	23%	73	

Test the claim at the 5% significance level that the distribution of patients in these wards has not changed.

Select the [p-value, Decision to Reject (RH₀) or Failure to Reject (FRH₀)].

- a) \bigcirc [p-value = 0.108, RH0]
- **b)** \bigcirc [p-value = 0.631, RH0]
- c) [p-value = 0.631, FRH0]
- **d)** \bigcirc [p-value = 0.316, RH0]
- **e)** \bigcirc [p-value = 0.108, FRH0]

chisq.test(c(75,95,30,47,73),p=c (.20,.32,.10,.15,.23))

Chi-squared test for given probabilities

data: c(75, 95, 30, 47, 73) X-squared = 2.5761, df = 4, p-value = 0.6311

Question 11

Your answer is CORRECT.

In a experiment on relaxation techniques, subject's brain signals were measured before and after the relaxation exercises with the following results:

Person	1	2	3	4	5
Before	38.8	42.6	41.8	38.2	38.7
After	35.7	37.3	43.8	40.2	40.7

Is there sufficient evidence to suggest that the relaxation exercise slowed the brain waves? Assume the population is normally distributed.

Select the [p-value, Decision to Reject (RH₀) or Failure to Reject (FRH₀)].

- a) \bigcirc [p-value = 0.773, RH0]
- **b)** \bigcirc [p-value = 0.773, FRH0]
- c) \bigcirc [p-value = 0.193, RH0]
- **d)** \bigcirc [p-value = 0.387, RH0]
- **e**) [p-value = 0.387, FRH0]