Section 2.1 Counting Techniques

Combinatorics is the study of the number of ways a set of objects can be arranged, combined, or chosen; or the number of ways a succession of events can occur. Each result is called an outcome. The collection of all possible outcomes is the sample space. An event is a subset of outcomes. When several events occur together, we have a **compound event**.

The **Fundamental Counting Principle** states that the total number of a ways a compound event may occur is $n_1 \cdot n_2 \cdot n_3 \cdot \dots \cdot n_i$ where n_1 represents the number of ways the first event may occur, n_2 represents the number of ways the second event may occur, and so on.

Example 1: The Burger Bar offers the following items on its menu:

4		.	-	4
	<u>Burger</u>	<u>Sides</u>	<u>Beverages</u>	<u>Desserts</u>
	Single Meat	Fries	Tea	Cheesecake
	Double Meat	Onion Rings	Coffee	Brownie
		Fruit Bowl	Soda	Cookie
		Cheddar Peppers		Ice Cream Cone

If a customer chooses 1 item from each category, how many meals can be made? List 1 meal possible. 7 of de

$$2(4)(3)(4) = 96$$

Example 2: A license plate consists of 3 letters followed by 4 digits. How many license plates are possible if the first letter cannot be O, repetition of letters is allowed, but digits may not repeat?

1

Example 3: How many ways can the letters of the word VOWZL be arranged if the first letter cannot be a vowel?

Permutations

n-Factorial: For any natural number n, $n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$.

$$0! = 1$$

R command: factorial()

A **permutation** of a set is arranging the elements of the set with regard to order. *Example: My previous pin number was 2468, now it's 8642.*

Formula: ${}_{n}P_{r} = \frac{n!}{(n-r)!}$, $r \le n$, where n is the number of distinct objects and r is the number of distinct objects taken r at a time.

Example 4: <u>Seven people</u> arrive at a ticket counter at the same time to buy concert tickets. In how many ways can they line up to purchase their tickets?

Command:

Answer:

factorial(7)/

factoria (7)

5040

factorial (o

2

 $P(7,7) = \frac{7!}{(7-1)!} = \frac{7!}{0!} = \frac{7!}{3!} = 7!$

Example 5: In how many ways can 3 of the six symbols, @, &, %, \$, *, # be arranged on an ID tag?

$$N=6$$
 $r=3$

$$\frac{6!}{3!} = 120$$

Command:

Answer:

factorial (6)/factorial (3) 120

Circular Permutations

Let's say we have the following situation...

How can persons A, B, C be arranged around a circle? Not in the three ways as shown above because each one of A, B, C has the same neighbor! Without changing neighbor, only changing seats will not change the circular permutation. Change neighbors and you will change the circular permutation. As follows: So, three persons A, B, C can only be arranged in 2 ways around a circle. Hence, n different things can be arranged around a circle in (n-1)! ways. Whereas, n different things can be arranged in a line n! ways. http://www.math-for-all-grades.com/CircularPermutation.html Example 6: In how many ways can 12 people be seated around a circular table? Command: Answer: factorial (11) 39,96,800 Formula: Permutations of n objects, not all distinct Given a set of n objects in which n_1 objects are alike and of one kind, n_2 objects are alike and of another kind,..., and, finally, n_r objects are alike and of yet another kind so that $n_1 + n_2 + ... + n_r = n$ then the number of permutations of these n objects taken n at a time is given by $\frac{n!}{n_1!n_2!\cdots n_r!} \longrightarrow multiplied.$ Example 7: How many arrangements can be made using all of the letters in the word MISSISSIPPI? n = total number of objects =u. letter X.41.4! M =>factorial (11)/(factorial (4) * factorial (4) * Section 2.1 – Counting Techniques

Combinations

A **combination** of a set is arranging the elements of the set without regard to order.

Example: The marinade for my steak contains soy sauce, worchester sauce and a secret seasoning.

Formula: ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$, $r \le n$, where n is the number of distinct objects and r is the number of distinct objects taken r at a time. R Command: choose(n, r)

Example 8: An organization needs to make up a social committee. If the organization has 25 members, in how many ways can a 10 person committee be made?

Command: Answer:

Example 9: A committee of 16 people, 7 women and 9 men, is forming a 7- member subcommittee that must consist of 3 women and 4 men. In how many ways can the subcommittee be formed?

Command: Answer:

والمط

Example 10: A tumbler contains 30 eubes, in which 10 are blue, 10 are yellow, and 10 are red. The balls of each color are lettered A - J. You choose 6 balls at random from the tumbler. How many selections consist of exactly 3 balls with the same letter?

A-J -> 10 letters

10 * C (27,3)

30 3 same 27 different letter 3

Command:

10 + choose (27,3)

Answer:

29,250

Try this one: Five cards are drawn from a well-shuffled 52 card deck.

2	3	4	5	6	7	8	9	10	J	Q	K	A
Q	Q	Q	Q	Q	Q	Q	Q	10 ♡	Q	Q	Q	Q
2	3	4	5	6	7	8	9	10	J	Q	K	A
♦	*	*	\$	*	♦	♦	♦	10 \$	4	♦	\$	\$
2	3	4	5	6	7	8	9	10 ♣	J	Q	K	A
•		•										
2	3	4	5	6	7	8	9	10 •	J	Q	K	A
•	•	•	•	•	•	•	•	•	•	•	•	

a. In how many ways can the five cards be drawn?

C(52,5)

Command:

Answer:

chappe (52,5)

2,598,960

b. In how many ways can four Queens be drawn?

C(4,4)*C(48,1)

40 48 other 1 cards

Command:

choose (4,4) * choose (48,1)

48

c. In how many ways can four Queens or four Kings be drawn?

C(4,4) C(48,1) + C(4,4) C(48,1)

Command:

Answer:

Choose (4,4) + choose (48,1)

d. In how many ways can any four of a kind be drawn?

There are 13 kinds in a deck

13 + C (4,4) C(48,1), 48

Command:

Answer: