## Section 2.2 Sets and Venn Diagrams

A **set** is a collection of objects. Two sets are equal if they contain the same elements.

The Universal set is the set of interest in a particular discussion.

Set A is a **subset** of set B if every element that is in set A is also in set B. The notation for this is  $A \subseteq B$ .

Set A is a **proper subset** of set B if every element that is in set A is also in set B and there is at least one element in set B that is not in set A. The notation for this is  $A \subseteq B$ .

The **union** of A and B, which is written as  $A \cup B$ , is the set of all elements that belong either to set A or to set B or to both A and B. Key words in word problems will be: "or" or "either and or both"

The **intersection** of A and B, which is written as  $A \cap B$ , is the set of all elements that belong to both set A and set B. Key words in word problems will be: "and", "both", "but", "nor"

If the intersection of two sets is empty (the empty set is denoted by  $\emptyset$ ), then the sets are **disjoint** or **mutually exclusive** and we write  $A \cap B = \emptyset$ .

Examples of disjoint sets: Choosing a King and a Queen from a deck of cards, Rolling a pair of six-sided dice and getting an even and an odd number

The **complement of set** A, which is written as  $A^c$ , is the set of all elements that are in the universal set but are not in set A. Key word in word problems will be: "not"

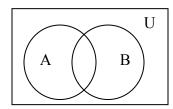
## **Some Useful Properties**

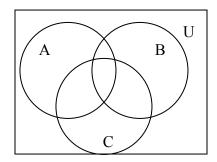
$$U^{c} = \emptyset \qquad \qquad \emptyset^{c} = U \qquad \qquad (A^{c})^{c} = A$$

$$(A \cup B)^c = A^c \cap B^c \qquad (A \cap B)^c = A^c \cup B^c$$

Example 1: Let  $A = \{2,4,6\}$ ,  $B = \{3,6,9\}$ ,  $C = \{0,6,7\}$ , and  $U = A \cup B \cup C$  a. Find  $A^c$ .

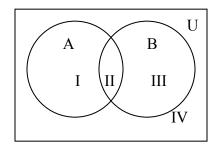
b. Find  $A \cap C$ .


c. Find 
$$(A \cup C)^c$$

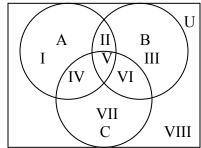

d. Is 
$$C \subset U$$
?

e. Find 
$$C \cap (A \cup B^c)^c$$

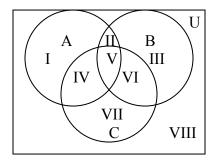
A Venn diagram is a visual representation of sets.


Some look like:

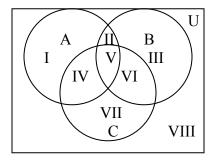





Example 2: Use shading to state the region(s) that represent(s) the given set. (Assume the given sets are not disjoint. This is obvious from the Venn diagrams.)


a.  $(A \cap B^c)$ 




b.  $(A \cup B)^c$ 



c.  $(A^c \cup (B \cap C))$ 



d.  $(A \cap (B \cup C))$ 



Example 3: In a survey of 374 coffee drinkers it was found that 227 take sugar, 245 take cream, and 163 take sugar and cream with their coffee. Use a Venn diagram to answer the following questions.

- a. How many take sugar but not cream with their coffee?
- b. How many take sugar or cream?