Section 3.2 Binomial Distributions

A **Bernoulli Trial** is a random experiment with the following features:

- 1. The outcome can be classified as either a success or a failure (only two options and each is mutually exclusive).
- 2. The probability of success is p and probability of failure is 1 p.

A **Bernoulli random variable** is a variable assigned to represent the successes in a Bernoulli trial.

If we wish to keep track of the number of successes that occur in repeated Bernoulli trials, we use a **binomial random variable**. Assuming there are n trials, then the random variable takes on the numbers $\{0, 1, 2, ..., n\}$.

A binomial experiment occurs when the following conditions are met:

- 1. Each trial can result in one of only two mutually exclusive outcomes (success or failure).
- 2. There are a fixed number of trials.
- 3. Outcomes of different trials are independent.
- 4. The probability that a trial results in success is the same for all trials.

Binomial probabilities are calculated with the following formula:

$$P(X = k) = C(n,k) \cdot p^{k} \cdot (1-p)^{n-k}$$

where X = binomial random variable, n = **whole** number of trials, k = number of successes, and p is the probability of success.

Command:

$$P(X = k) = \text{dbinom}(k, n, p)$$

 $P(X \le k) = \text{pbinom}(k, n, p)$
 $P(X > k) = 1 - P(X \le k) = 1 - \text{pbinom}(k, n, p)$

Example 1: Let X be a binomial random variable with probability success 0.32 and 10 independent trials. Calculate each of the following using R-Studio a. P(X = 5)

Command:	Answer:
b. $P(X \le 2)$ Command:	Answer:
c. $P(X < 2)$	

Answer:

d. $P(X > 8)$	
Command:	Answer:
e. $P(X \ge 8)$	
Command:	Answer:
f. P(3≤X≤6)	
Command:	Answer:
Example 2: A fair coin is flipped 30 times. a. exactly 12 times?	Find the probability that the coin comes up tails:
Command:	Answer:
b. less than 12 times?	
Command:	Answer:
c. 11 or more times?	
Command:	Answer:

Binomial Distribution Formulas for Mean, Variance and Standard Deviation

$$\mu = E(X) = np$$

$$\sigma^2 = np(1-p)$$

$$\sigma = \sqrt{np(1-p)}$$

Example 3: Suppose it is known that 80% of the people exposed to the flu virus will contract the flu. Out of a family of five exposed to the virus, what is the probability that: a. at least two will get the flu?

Command:	Answer:

b. between two and four, inclusive, will get the flu?

Command: Answer:

c. Find the mean and standard deviation of this distribution. $\mu = E(X) = np$

$$\sigma = \sqrt{np(1-p)}$$

Note: This is a binomial distribution since:

The trials: are fixed, each is independent and the probability of success for each is the same.