Predicates

Propositional logic is not enough to express the meaning of all statements in mathematics and natural language.

Examples:

Is "x > 1" True or False?

roperty of the subject = Predicate

Is "*x* is a great tennis player" True or False?

Predicate Logic

- Variables: x, y, z, etc.
- Predicates: P(x), Q(x), etc.
- Quantifiers: Universal and Existential.
- Connectives from propositional logic carry over to predicate logic.
- A **predicate** P(x) is a declarative sentence whose truth value depends on one or more variables.
- P(x) is also said to be the value of the **propositional function** P at x.
- P(x) becomes a **proposition** when a value of x is assigned from the domain U.

Examples (Propositional Functions):

1. Let P(x) be " $x \ge 1$." Determine the truth value of a. P(2)b. $P(-2) \Rightarrow P(1)$ True 2. Let R(x, y, z) be "x + y = z." Find these truth values: a. R(2, -1, 5)b. R(x, 3, z)c. $P(-2) \Rightarrow P(1)$ True b. R(x, 3, z)c. P(-1) = 5False Cannot (© 2020, I. Perepelitsa

Quantifiers

We need *quantifiers* to express the meaning of English words including *all* and *some*:

- "All students in this class are computer science majors"
- "There is a math major student in this class"

The two most important quantifiers are:

- *Universal Quantifier,* "For all," symbol: ∀
- *Existential Quantifier*, "There exists," symbol: 3

We write as in $\forall x P(x)$ and $\exists x P(x)$.

• $\forall x P(x)$ asserts P(x) is true for every x in the *domain*.

If = { x_1, x_2, \dots, x_n }, then $\forall x P(x) = P(x_1) \land P(x_2) \dots \land P(x_n)$.

• $\exists x P(x)$ asserts P(x) is true for some x in the domain.

If =
$$\{x_1, x_2, ..., x_n\}$$
, then $\exists x P(x) = P(x_1) \lor P(x_2) ... \lor P(x_n)$.

Examples:

- 1. Let P(x): "x > -x" with the domain of all positive real numbers. Find the truth value of $\forall x P(x)$.
- 2. Let P(x): "x > -x" with the domain of all real numbers. Find the truth value of $\forall x P(x)$.

• The truth value of $\exists x P(x)$ and $\forall x P(x)$ depends BOTH on the propositional function P(x) and on the domain U.

Quantifiers		
Statement	When True?	When False?
$\forall x P(x)$	P(x) is true for every x .	There is an x for which $P(x)$ is false.
$\exists x P(x)$	There is an x for which $P(x)$ is true.	P(x) is false for every x .

Example: Suppose the domain of the propositional function $P(x): x^2 \le x$ consists of $\{1, 2, 3\}$. Write out each of the following propositions using conjunction or disjunction and determine its truth value.

1.
$$\forall x P(x) = P(T) \land P(2) \land P(3)$$

T $\land F \land F$
False
True

An element for which P(x) is false is called a **counterexample of** $\forall x P(x)$

Precedence of Quantifiers

The quantifiers \forall and \exists have higher precedence than all the logical operators.

Example: $\forall x P(x) \lor Q(x)$ means $(\forall x P(x)) \lor Q(x)$. $\forall x (P(x) \lor Q(x))$ means something different.

Negating Quantifiers

De Morgan laws for quantifiers (the rules for negating quantifiers) are:

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Example: Express each of these statements using quantifiers. Then form a negation of the statement, so that no negation is left of a quantifier. Next, express the negation in simple English.

- Lieles

1. "Some old dogs can learn new tricks."

1

T(x) = x can learn new mices
Domain = old dogs
$$\exists x T(x)$$

 $\exists x T(x) \equiv \forall x T(x)$
No old dog can learn new tricks.
All old dogs cannot learn @ 2020, I. Perepelitsa
here tricks.

2. "Every bird can fly."

 $F(x) = x \operatorname{can} fly$ $Domain = \operatorname{birdS}$ $4 \times F(x) \qquad \forall X F(x) \equiv \exists X \forall F(x)$

Some birds cannot fly. There exists a bird that cannot fly.

 $\neg \forall x(x^2 > x) \equiv \exists x^{\neg}(x^2 > x) \equiv \exists x(x^2 \leq x)$

^{3.} $\forall x(x^2 > x)$

Translating from English into Logical Expressions

Examples: Translate the statements into the logical symbols. Let *x* be in set of all students in this class.

- 1. Someone in your class can speak Hindi.
- 2. Everyone in your class is friendly.
- 3. There is a student in your class who was not born in California.

H(x) ="x speaks Hindi", F(x) ="x is friendly," C(x) ="x was born in California."

1. $\exists x H(x)$ 3. $\exists x C(x) \equiv \forall x C(x)$ 2. $\forall x F(x)$ Not everyone in your class was born in California

Example: Translate the following sentence into predicate logic and give its negation:

"Every student in this class has taken a course in Java."

Solution:

First, decide on the domain *U*!

Solution 1: If *U* is all students in this class, define a propositional function J(x) denoting "x has taken a course in Java" and translate as

Solution 2: But if *U* is all people, also define a propositional function S(x) denoting "x is a student in this class" and translate as

 $L^{r} \wedge (x) 2) \times E \equiv$

© 2020, I. Perepelitsa

$((x) - (x) > x) \times \forall$ $((x) - (x) > x) \times \forall$ $((x) - (x) > x) \times \forall$ $((x) - (x) > x) \times \forall$

 $\equiv \exists \times (\neg S(x) \lor J(x))$

((2) [∧ ((2) 2)) × E

Example: Translate the following sentence into predicate logic:

"Some student in this class has taken a course in Java."

Solution:

First, decide on the domain *U*!

Solution 1: If *U* is all students in this class, translate as

Solution 2: But if *U* is all people, then translate as

Jx (SW N JW)

 $(\& U \land (x) \geq x \geq z) \times E \land$ $(\& U \land (x) \geq x \geq z) \land x \neq z \equiv$ $(\& U \land (x) \geq x \geq z) \land x \neq z \equiv$ $(\& U \land (x) \geq z) \times \varphi \equiv$