Nested quantifiers

Nested quantifiers are often necessary to express the meaning of sentences in English as well as important concepts in computer science and mathematics.

Example: "Every real number has an additive inverse" is translated as $\forall x \exists y(x + y = 0)$, where the domains of x and y are the real numbers.

Example: Translate into English the statement $\forall x \forall y ((x < 0) \land (y < 0) \rightarrow (xy > 0))$

where the domains of *x* and *y* are the real numbers.

Order of quantifiers

Examples:

- 1. Let P(x, y) be the predicate "x + y = y + x" Assume that U is the real numbers. Determine the truth value of $\forall x \forall y P(x, y)$ and $\forall y \forall x P(x, y)$.
- 2. Let Q(x, y) be the predicate "x + y = 0" Assume that U is the real numbers. Determine the truth value of $\forall x \exists y Q(x, y)$ and $\exists y \forall x Q(x, y)$.

Pay attention to the order of quantifiers when there are different ones in one statement!

Example: Let *U* be the real numbers. Define $P(x, y) : x \cdot y = 0$.

What is the truth value of the following?

- 1. $\forall x \forall y P(x, y)$ 3. $\exists x \forall y P(x, y)$
- 2. $\forall x \exists y P(x, y)$ 4. $\exists x \exists y P(x, y)$

Example: Let *U* be the real numbers. Define P(x, y) : x / y = 1

What is the truth value of the following?

1. $\forall x \forall y P(x, y)$ 3. $\exists x \forall y P(x, y)$ 2. $\forall x \exists y P(x, y)$ 4. $\exists x \exists y P(x, y)$

Translating Mathematical Statements into Statements with Nested Quantifiers

Example: Express the following statement using mathematical and logical operators, predicates, and quantifiers. The domain consists of all integers.

- 1. The sum of two negative integers is negative.
- 2. The difference of two positive integers is not necessarily positive.

Translating Nested Quantifiers into English

Example: Translate the statement $\forall x \ (C(x) \lor \exists y \ (C(y) \land F(x, y)))$

where C(x) is "*x* has a computer," and F(x, y) is "*x* and *y* are friends," and the domain for both *x* and *y* consists of all students in your school.

Example: Translate the statement $\exists x \forall y \forall z ((F(x, y) \land F(x, z) \land (y \neq z)) \rightarrow \neg F(y, z))$

Examples: Express in predicate logic using the following predicates.

$$B(x, y) = x$$
 is a brother of y, $S(x, y) = x$ is a sibling of y
 $L(x, y) = x$ loves y

- 1. "Brothers are siblings."
- 2. "Everybody loves somebody."
- 3. "There is someone who is loved by everyone."
- 4. "There is someone who loves someone."
- 5. "Everyone loves himself"

Negating Nested Quantifiers

• Use De Morgan's Laws to move the negation as far inwards as possible.

Example: Express the negation of the statement $\forall x \exists y (xy = 1)$ so that no negation precedes a quantifier.