Discrete Mathematics Introduction to Proofs

Definition: A theorem is a statement that can be shown to be true.
We demonstrate that a theorem is true with a proof (valid argument) using:

- Definitions
- Other theorems
- Rules of logic
- Axioms
- A lemma is a 'helping theorem' or a result that is needed to prove a theorem.
- A corollary is a result that follows directly from a theorem.
- Less important theorems are sometimes called propositions.
- A conjecture is a statement that is being proposed to be true. Once a proof of a conjecture is found, it becomes a theorem. It may turn out to be false.

Forms of Theorems

- Many theorems assert that a property holds for all elements in a domain, such as the integers, the real numbers, or some of the discrete structures that we will study in this class.
- Often the universal quantifier (needed for a precise statement of a theorem) is omitted by standard mathematical convention.

Example:

"If $x>y$, where x and y are positive real numbers, then $x^{2}>y^{2}$ " means

Methods of Proving Theorems

1. Direct Proofs

In direct proof, we show that conditional $p \rightarrow q$ is true. We assume that p is true and show that q must be true.

Definition: The integer n is even if there exists an integer k such that $n=2 k$, and n is odd if there exists an integer k, such that $n=2 k+1$. Note that every integer is either even or odd and no integer is both even and odd.

Example: -21 is odd since $-21=2(-11)+1 ; 0$ is even since $0=2(0)$

Example: Give a direct proof of the theorem "If n is an odd integer, then n^{2} is odd."

QED is an abbreviation of the words from the Latin phrase "Quod Erat Demonstrandum" that literally means, "what was to be shown". Traditionally, the abbreviation is placed at the end of a mathematical proof to indicate that the proof or argument is complete.

Example: Use a direct proof to show that "The product of two odd numbers is odd."

Example: Give a direct proof of the theorem "If n is a perfect square, then $n+2$ is NOT a perfect square."

2. Proof by Contraposition

We know that $p \rightarrow q \equiv \neg q \rightarrow \neg p$.

This means that the conditional statement $p \rightarrow q$ can be proven by showing that its contrapositive, $\neg q \rightarrow \neg p$, is true. We assume that $\neg q$ is true and show that $\neg p$ is true.

Example: Prove that "If m and n are integers and $m \times n$ is even, then m is even or n is even."

3. Proofs by Contradiction

Suppose we want to prove that a statement $p \rightarrow q$ is true. We assume $p \wedge \neg q$, then show that leads to a contradiction.

Why does it work to prove $p \rightarrow q$ is true?
Example: Prove that if n is an integer and $n^{3}+5$ is odd, then n is even using
a. a proof by contraposition
b. a proof by contradiction

Contraposition:

Contradiction:

Other types of proofs

- Trivial Proof: If we know q is true, then $p \rightarrow q$ is true as well.

Example: "If it is raining then $1=1$."

- Vacuous Proof: If we know p is false then $p \rightarrow q$ is true as well.

Example: "If I am both rich and poor then $2+2=5$."

Even though these examples seem silly, both trivial and vacuous proofs are often used in mathematical induction, as we will see later.

- Proofs of Equivalence: To prove a theorem that is biconditional statement, that is $p \leftrightarrow q$, we show that $p \rightarrow q$ and $q \rightarrow p$ are BOTH true.

Example: Prove that the following is true for all positive integers n : n is even if and only if $3 n^{2}+8$ is even.

- Counterexamples: When we believe a statement of the form $\forall x P(x)$ to be false, we look for a counterexample.

Example: Show that the statement "Every positive integer is the sum of the squares of two integers" is false.

What is wrong with this proof?

"Proof" that $1=2$.

Step

1. $a=b$
2. $a^{2}=a b$
3. $a^{2}-b^{2}=a b-b^{2}$
4. $(a-b)(a+b)=b(a-b)$
5. $a+b=b$
6. $2 b=b$
7. $2=1$

Reason

1. Given
2. Multiply both sides of (1) by a
3. Subtract b^{2} from both sides of (2)
4. Algebra on (3)
5. Divide both sides by $a-b$
6. Replace a by b in (5) since $a=b$
7. Divide both sides of (6) by b
