Discrete Mathematics Introduction to Proofs

Definition: A *theorem* is a statement that can be shown to be true.

We demonstrate that a theorem is true with a *proof* (valid argument) using:

- Definitions
- Other theorems
- Rules of logic
- Axioms
- A *lemma* is a 'helping theorem' or a result that is needed to prove a theorem.
- A *corollary* is a result that follows directly from a theorem.
- Less important theorems are sometimes called *propositions*.
- A *conjecture* is a statement that is being proposed to be true. Once a proof of a conjecture is found, it becomes a theorem. It may turn out to be false.

Forms of Theorems

- Many theorems assert that a property holds for all elements in a domain, such as the integers, the real numbers, or some of the discrete structures that we will study in this class.
- Often the universal quantifier (needed for a precise statement of a theorem) is omitted by standard mathematical convention.

Example:

"If x > y, where x and y are positive real numbers, then $x^2 > y^2$ " means

Methods of Proving Theorems

1. Direct Proofs

In direct proof, we show that conditional $p \rightarrow q$ is true. We assume that p is true and show that q must be true.

Definition: The integer n is even if there exists an integer k such that n = 2k, and n is odd if there exists an integer k, such that n = 2k + 1. Note that every integer is either even or odd and no integer is both even and odd.

Example: -21 is odd since -21 = 2(-11) + 1; 0 is even since 0 = 2(0)

Example: Give a *direct* proof of the theorem "If n is an odd integer, then n^2 is odd."

QED is an abbreviation of the words from the Latin phrase "*Quod Erat Demonstrandum*" that literally means, "**what was to be shown**". Traditionally, the abbreviation is placed at the end of a mathematical proof to indicate that the proof or argument is complete.

Example: Use a *direct* proof to show that "The product of two odd numbers is odd."

Example: Give a *direct* proof of the theorem "If n is a perfect square, then n + 2 is NOT a perfect square."

2. Proof by Contraposition

We know that $p \rightarrow q \equiv \neg q \rightarrow \neg p$.

This means that the conditional statement $p \rightarrow q$ can be proven by showing that its contrapositive, $\neg q \rightarrow \neg p$, is true. We assume that $\neg q$ is true and show that $\neg p$ is true.

Example: Prove that "If m and n are integers and $m \times n$ is even, then m is even or n is even."

3. Proofs by Contradiction

Suppose we want to prove that a statement $p \rightarrow q$ is true. We assume $p \land \neg q$, then show that leads to a contradiction.

Why does it work to prove $p \rightarrow q$ is true?

Example: Prove that if *n* is an integer and $n^3 + 5$ is odd, then *n* is even using

- a. a proof by *contraposition*
- b. a proof by *contradiction*

Contraposition:

Contradiction:

Other types of proofs

• *Trivial Proof*: If we know *q* is true, then $p \rightarrow q$ is true as well.

Example: "If it is raining then 1=1."

• *Vacuous Proof*: If we know *p* is false then $p \rightarrow q$ is true as well.

Example: "If I am both rich and poor then 2 + 2 = 5."

Even though these examples seem silly, both trivial and vacuous proofs are often used in mathematical induction, as we will see later.

• *Proofs of Equivalence*: To prove a theorem that is biconditional statement, that is $p \leftrightarrow q$, we show that $p \rightarrow q$ and $q \rightarrow p$ are BOTH true.

Example: Prove that the following is true for all positive integers n: n is even if and only if $3n^2 + 8$ is even.

• *Counterexamples*: When we believe a statement of the form $\forall x P(x)$ to be false, we look for a counterexample.

Example: Show that the statement "Every positive integer is the sum of the squares of two integers" is false.

What is wrong with this proof?

"Proof" that 1 = 2.

Step

1. a = b

2.
$$a^2 = ab$$

3.
$$a^2 - b^2 = ab - b^2$$

4.
$$(a-b)(a+b) = b(a-b)$$

5.
$$a + b = b$$

- 6. 2b = b
- 7. 2 = 1

Reason

- 1. Given
- 2. Multiply both sides of (1) by a
- 3. Subtract b^2 from both sides of (2)
- 4. Algebra on (3)
- 5. Divide both sides by a b
- 6. Replace *a* by *b* in (5) since a = b
- 7. Divide both sides of (6) by b