Section 4.7 Vertical and Horizontal Asymptotes; Vertical Tangents and Cusps

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1431
Test 2

- Test 2: November 1-4 in CASA
- Loggin to CourseWare to reserve your time to take the exam.
Review for Test 2 by the College Success Program.

Friday, October 24 2:30–3:30pm in the basement of the library by the C-site.
Grade Information

- 300 points determined by exams 1, 2 and 3
- 100 points determined by lab work, written quizzes, homework, daily grades and online quizzes.
- 200 points determined by the final exam
- 600 points total
More Grade Information

- 90% and above - A
- at least 80% and below 90% - B
- at least 70% and below 80% - C
- at least 60% and below 70% - D
- below 60% - F
Online Quizzes are available on CourseWare.

If you fail to reach 70% during three weeks of the semester, I have the option to drop you from the course!!!
Tuesday, November 4, 2008

Last day to drop a course or withdraw with a “W” (must be by 5 pm)
Assume the domain of f is all real numbers. The graph of $f'(x)$ is shown below. Give the number of critical values of f.

a. 2
b. 3
c. 4
d. 5
e. None of these
Assume the domain of f is all real numbers. The graph of $f'(x)$ is shown below. Give the number of intervals of increase of f.

a. 1
b. 2
c. 3
d. 4
e. None of these
Assume the domain of \(f \) is all real numbers. The graph of \(f'(x) \) is shown below. Give the number of intervals of decrease of \(f \).

a. 1

b. 2

c. 3

d. 4

e. None of these
Assume the domain of f is all real numbers. The graph of $f'(x)$ is shown below. Classify the smallest critical number of f

a. local maximum
b. local minimum
c. neither
Assume the domain of f is all real numbers. The graph of $f'(x)$ is shown below. Classify the critical number of f between 0 and 2.

a. local maximum
b. local minimum
c. neither
Assume the domain of f is all real numbers. The graph of $f'(x)$ is shown below. Give the number of intervals where the graph of f is concave up.

a. 1

b. 2

c. 3

d. 4

e. None of these
Assume the domain of \(f \) is all real numbers. The graph of \(f'(x) \) is shown below. Give the number of intervals where the graph of \(f \) is concave down.

(a) 1
(b) 2
(c) 3
(d) 4
(e) None of these
Assume the domain of f is all real numbers. The graph of $f'(x)$ is shown below. Give the number of the points of inflection of the graph of f.

a. 1

b. 2

c. 3

d. 4

e. None of these
The line $x = c$ is a **vertical asymptote** for the function f:

$$f(x) \to \infty \quad \text{as} \quad x \to c.$$
The line $x = c$ is a **vertical asymptote** for the function f:

$$f(x) \to -\infty \quad \text{as} \quad x \to c.$$
The line $x = c$ is a vertical asymptote for both functions f and g:

$$f(x) \to \infty \text{ and } g(x) \to -\infty \quad \text{as } x \to c^-.$$
The line \(x = c \) is a **vertical asymptote** for both functions \(f \) and \(g \):

\[
f(x) \to \infty \quad \text{and} \quad g(x) \to -\infty \quad \text{as} \quad x \to c^+.
\]
Typically, to locate the vertical asymptotes for a function f,

- find the values $x = c$ at which f is discontinuous
- and determine the behavior of f as x approaches c.

The vertical line $x = c$ is a vertical asymptote for f if any one of the following conditions holds

- $f(x) \to \infty$ or $-\infty$ as $x \to c^+$;
- $f(x) \to \infty$ or $-\infty$ as $x \to c^-$;
- $f(x) \to \infty$ or $-\infty$ as $x \to c$.
The line $x = 4$ is a **vertical asymptote** for

$$f(x) = \frac{3x + 6}{x^2 - 2x - 8} = \frac{3(x + 2)}{(x + 2)(x - 4)}.$$
Vertical Asymptotes: Tangent Function

The line \(x = \pm \pi/2, \pm 3\pi/2, \pm 5\pi/2, \cdots \), are vertical asymptotes for the tangent function.
The line $y = L$ is a **horizontal asymptote** for the function f:

$$f(x) \to L \quad \text{as} \quad x \to \infty.$$
The line $y = L$ is a **horizontal asymptote** for the function f:

$$f(x) \to L \quad \text{as} \quad x \to -\infty.$$
The line $x = 2$ is a **vertical asymptote**.

The line $y = 1$ is a **horizontal asymptote**.
Let
\[R(x) = \frac{a_n x^n + \cdots + a_1 x + a_0}{b_k x^k + \cdots + b_1 x + b_0} \]
be a rational function. Then

- if \(n < k \),
 \[R(x) \rightarrow 0 \quad \text{as} \quad x \rightarrow \pm \infty; \]

- if \(n = k \),
 \[R(x) \rightarrow \frac{a_n}{b_n} \quad \text{as} \quad x \rightarrow \pm \infty; \]

- if \(n > k \),
 \[R(x) \rightarrow \pm \infty \quad \text{as} \quad x \rightarrow \pm \infty. \]
The lines $x = \pm 1$ are vertical asymptotes.
The line $y = 3$ is a horizontal asymptote.
The graph of $f(x) = x^{1/3}$ has a vertical tangent at the point $(0,0)$ since

$$f'(x) = \frac{1}{3}x^{-2/3} \to \infty \quad \text{as} \ x \to 0.$$
The graph of $g(x) = (2 - x)^{1/5}$ has a **vertical tangent** at the point $(2, 0)$ since

$$g'(x) = -\frac{1}{5}(2-x)x^{-4/5} \to -\infty \quad \text{as } x \to 2.$$
The graph of $f(x) = x^{2/3}$ has a **vertical cusp** at the point $(0, 0)$ since $f'(x) = \frac{2}{3}x^{-1/3}$ and

$$f'(x) \to -\infty \text{ as } x \to 0^-, \quad \text{and} \quad f'(x) \to \infty \text{ as } x \to 0^+.$$
Vertical Cusp: Rational Power $g(x) = 2 - (x - 1)^{2/5}$

The graph of $g(x) = 2 - (x - 1)^{2/5}$ has a vertical cusp at the point $(1, 2)$ since $g'(x) = -\frac{2}{5}(x - 1)^{-3/5}$ and

$$g'(x) \to \infty \text{ as } x \to 0^-, \quad \text{and} \quad g'(x) \to -\infty \text{ as } x \to 0^+.$$
Example: $f(x) = |x^3 - 1|$

Is there a vertical cusp for the graph of $f(x) = |x^3 - 1|$?
Example

- Give the equations of the vertical asymptotes, if any.
- Give the equations of the horizontal asymptotes, if any.
Example

- Give the equations of the vertical asymptotes, if any.
- Give the equations of the horizontal asymptotes, if any.
- Give the number c, if any, at which the graph has a vertical cusp.