Lecture 18
Section 5.5 Some Area Problems

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1431
Quiz 1

What is today?

a. Monday
b. Wednesday
c. Friday
d. None of these
Area below the graph of a Nonnegative f

$f(x) \geq 0$ for all x in $[a, b]$.

$\Omega =$ region below the graph of f.

Area of $\Omega = \int_{a}^{b} f(x) \, dx = F(b) - F(a)$

where $F(x)$ is an antiderivative of $f(x)$.
Fundamental Theorem of Integral Calculus

Theorem

In general,
\[\int_a^b f(x) \, dx = F(b) - F(a). \]

where \(F(x) \) is an antiderivative of \(f(x) \).

<table>
<thead>
<tr>
<th>Function</th>
<th>Antiderivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^r)</td>
<td>(\frac{x^{r+1}}{r+1}) ((r) a rational number (\neq -1)</td>
</tr>
<tr>
<td>(\sin x)</td>
<td>(-\cos x)</td>
</tr>
<tr>
<td>(\cos x)</td>
<td>(\sin x)</td>
</tr>
<tr>
<td>(\sec^2 x)</td>
<td>(\tan x)</td>
</tr>
<tr>
<td>(\sec x \tan x)</td>
<td>(\sec x)</td>
</tr>
<tr>
<td>(\csc^2 x)</td>
<td>(-\cot x)</td>
</tr>
<tr>
<td>(\csc x \cot x)</td>
<td>(-\csc x)</td>
</tr>
</tbody>
</table>
Quiz 2

Give the value of \(\int_{-1}^{1} [x^3 - 2x^2 + \sin(\pi x)] \, dx \).

a. \(\frac{1}{2} \)

b. \(\frac{4}{3} \)

c. \(-\frac{4}{3} \)

d. \(-\frac{1}{2} \)

e. None of these
Example 1

Find the area below the graph of the square-root function from \(x = 0 \) to \(x = 1 \).
Example 2

Example

Find the area bounded above by the curve $y = 4 - x^2$ and below by the x-axis.
Give the area bounded between the x-axis and the graph of $y = x^2 + 1$ for $-1 \leq x \leq 2$.

a. 5

b. 4

c. 3

d. 2

e. None of these
Area between the graphs of two Nonnegative f and g

$f(x) \geq g(x) \geq 0$ for all x in $[a, b]$.

$\Omega =$ region between the graphs of f (Top) and g (Bottom).

Area of $\Omega = \int_a^b \left[\text{Top} - \text{Bottom} \right] \, dx = \int_a^b \left[f(x) - g(x) \right] \, dx$.
Example 3

Find the area bounded above by $y = x + 2$ and below by $y = x^2$.
Area between the graphs of f and g

\[f(x) \geq g(x) \quad \text{for all } x \text{ in } [a, b]. \]

\[\Omega = \text{region between the graphs of } f \text{ (Top)} \text{ and } g \text{ (Bottom)}. \]

\[\text{Area of } \Omega = \int_a^b \left[\text{Top} - \text{Bottom} \right] \, dx = \int_a^b \left[f(x) - g(x) \right] \, dx. \]
Example 4

Find the area of the region shown in the figure below.
Example 5

Find the area between \(y = 4x \) and \(y = x^3 \) from \(x = -2 \) to \(x = 2 \).
Example 6

Example

Use integrals to represent the area of the region $\Omega = \Omega_1 \cup \Omega_2$ shaded in the figure below.
\(\int_a^c f(x) \, dx \) as Signed Area

\[f(x) \geq 0 \quad \text{for all } x \text{ in } [a, b] \]

\[\int_a^b f(x) \, dx = \text{Area of } \Omega_1 \]

\[f(x) \leq 0 \quad \text{for all } x \text{ in } [b, c] \]

\[\int_b^c f(x) \, dx = -\text{Area of } \Omega_2 \]

\[\int_a^c f(x) \, dx = \int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \text{Area of } \Omega_1 - \text{Area of } \Omega_2 \]

\[= \text{Area above the } x\text{-axis} - \text{Area below the } x\text{-axis} \]
\[\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{d} f(x) \, dx + \int_{d}^{e} f(x) \, dx + \int_{e}^{b} f(x) \, dx \]

\[= \text{Area of } \Omega_1 - \text{Area of } \Omega_2 + \text{Area of } \Omega_3 - \text{Area of } \Omega_4 \]

\[= [\text{Area of } \Omega_1 + \text{Area of } \Omega_3] - [\text{Area of } \Omega_2 + \text{Area of } \Omega_4] \]

\[= \text{Area above the } x\text{-axis} - \text{Area below the } x\text{-axis}. \]
Example 7

Evaluate $\int_{-1}^{3} (x^2 - 2x) \, dx$ and interpret the result in terms of areas.
Example 8

Example

Use integrals to represent the area of the region shaded in the figure below.
The graph of $y = f(x)$ is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_{-1}^{3} f(x) \, dx$.

a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these
The graph of $y = f(x)$ is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_{-1}^{2} f(x) \, dx$.

a. 0

b. $\frac{4}{3}$

c. $\frac{8}{3}$

D. 4

E. None of these
The graph of \(y = f(x) \) is shown below. \(\Omega_1 \) has area \(\frac{4}{3} \), \(\Omega_2 \) has area \(\frac{4}{3} \), and \(\Omega_3 \) has area \(\frac{4}{3} \). Give \(\int_0^2 f(x) \, dx \).

a. 0

b. \(\frac{4}{3} \)

c. \(\frac{8}{3} \)

d. 4

e. None of these
Quiz 7

The graph of $y = f(x)$ is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_{2}^{3} f(x) \, dx$.

a. 0

b. $\frac{4}{3}$

c. 8

d. 4

e. None of these
The graph of \(y = f(x) \) is shown below. \(\Omega_1 \) has area \(\frac{4}{3} \), \(\Omega_2 \) has area \(\frac{4}{3} \), and \(\Omega_3 \) has area \(\frac{4}{3} \). Give \(\int_{0}^{3} f(x) \, dx \).

a. 0
b. \(\frac{4}{3} \)
c. 8
d. 4
e. None of these
Quiz 9

The graph of $y = f(x)$ is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give the area bounded between the x-axis and $y = f(x)$ from $x = -1$ to $x = 3$.

a. 0

b. $\frac{4}{3}$

c. $\frac{8}{3}$

d. 4

e. None of these