Lecture 23Section 6.4 The Centroid of a Region; Pappus'

Theorem on Volumes

Jiwen He

Test 3

- Test 3: Dec. 4-6 in CASA
- Material Through 6.3.

Final Exam

• Final Exam: Dec. 14-17 in CASA

You Might Be Interested to Know ...

- I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).
- I will give an A to anyone who receives 95% or above on the final exam.
- I will give a passing grade to anyone who receives at least 70% on the final exam.

Quiz 1

What is today?

- a. Monday
- b. Wednesday
- c. Friday
- d. None of these

1 The Centroid of a Region; Pappus' Theorem on Volumes

1.1 The Centroid of a Region

The Centroid of a Region

The center of mass of a plate of constant mass density depends only on its shape Ω and falls on a point (\bar{x}, \bar{y}) that is called the *centroid*.

Principle 1: Symmetry

If the region has an axis of symmetry, then the centroid (\bar{x}, \bar{y}) lies somewhere along that axis. In particular, if the region has a center, then the center is the centroid.

The Centroid of a Region: Principle of Additivity

Principle 2: Additivity

If the region, having area A, consists of a finite number of pieces with areas A_1 , \cdots , A_n and centroids $(\bar{x}_1, \bar{y}_1), \cdots, (\bar{x}_n, \bar{y}_n)$, then

$$\bar{x}A = \bar{x}_1A_1 + \dots + \bar{x}_nA_n,$$

$$\bar{y}A = \bar{y}_1A_1 + \dots + \bar{y}_nA_n.$$

Centroid of a Region below the graph of $f \ (\geq 0)$

Let the region Ω under the graph of f have an area A. The centroid (\bar{x},\bar{y}) of Ω is given by

$$\bar{x}A = \int_a^b x f(x) \, dx, \quad \bar{y}A = \int_a^b \frac{1}{2} \left[f(x) \right]^2 dx.$$

Example *Example 1.* Find the centroid of the quarter-disc shown in the figure below.

Example Example 2. Find the centroid of the right triangle shown in the figure below.

Centroid of a Region between the graphs of f and g

$$f(x) \ge g(x) \ge 0$$
 for all x in $[a, b]$.
 Ω = region between the graphs of
 f (Top) and g (Bottom).

Let the region Ω between the graphs of f and g have an area A. The centroid (\bar{x}, \bar{y}) of Ω is given by

$$\bar{x}A = \int_{a}^{b} x \left[f(x) - g(x) \right] dx, \quad \bar{y}A = \int_{a}^{b} \frac{1}{2} \left(\left[f(x) \right]^{2} - \left[g(x) \right]^{2} \right) dx.$$

Example *Example 3.* Find the centroid of the region shown in the figure below.

Pappus' Theorem on Volumes 1.2

Pappus' Theorem on Volumes

Pappus' Theorem on Volumes

A plane region is revolved about an axis that lies in its plane. If the region does not cross the axis, then the volume of the resulting solid of revolution is

 $V = 2\pi \bar{R} A =$ (area of the region) × (circumference of the circle)

where A is the area of the region and \bar{R} is the distance from the axis to the centroid of the region.

Example *Example* 4. Find the volume of the solids formed by revolving the region, shown in the figure below, (a) about the y-axis, (b) about the y = 5.

$$(x-h)^2 + (y-k)^2 \le c^2, \quad h,k \ge c > 0$$

(a) about the x-axis, (b) about the y-axis.

Example

Example 6. Find the centroid of the half-disc

$$x^2 + y^2 \le r^2, \quad y \ge 0$$

by appealing to Pappus's theorem.