# Test 3 Review

### Jiwen He

### Test 3

- Test 3: Dec. 4-6 in CASA
- Material Through 6.3.

#### No Homework (Thanksgiving)

- No homework this week!
- Have a GREAT Thanksgiving!

#### Final Exam

• Final Exam: Dec. 14-17 in CASA

#### You Might Be Interested to Know ...

- I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).
- I will give an A to anyone who receives 95% or above on the final exam.
- I will give a passing grade to anyone who receives at least 70% on the final exam.

#### Quiz 1

What is today?

- a. Monday
- b. Wednesday
- c. Friday
- d. None of these

#### Test 3 Material

• Test 3 will cover material from Chapter 5, along with Sections 6.1, 6.2 and 6.3.

#### **Good Sources of Practice Problems**

- Examples from class.
- The basic homework problems.
- The basic online quiz problems.

#### Definite Integral and Lower/Upper Sums



Area of 
$$\Omega$$
 = Area of  $\Omega_1$  + Area of  $\Omega_2$  + · · · + Area of  $\Omega_n$ ,  
 $L_f(P) = m_1 \Delta x_1 + m_2 \Delta x_2 + \cdots + m_n \Delta x_n$   
 $U_f(P) = M_1 \Delta x_1 + M_2 \Delta x_2 + \cdots + M_n \Delta x_n$ 

$$L_f(P) \le \int_a^b f(x) \, dx \le U_f(P),$$
 for all partitions  $P$  of  $[a, b]$ 

#### Problem 1

Give both the upper and lower Riemann sums for the function  $f(x) = x^2$  over the interval [1,3] with respect to the partition  $P = \{1, \frac{3}{2}, 2, 3\}$ .



Lower/Upper Sums and Riemann Sums



 $L_f(P) \le S^*(P) \le U_f(P)$ , for all partitions P of [a, b]

Give the Riemann sums for the function  $f(x) = x^2$  over the interval [1,3] with respect to the partition  $P = \{1, \frac{3}{2}, 2, 3\}$  using midpoints.



# Fundamental Theorem of Integral Calculus

Theorem 1. In general,

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a).$$

where F(x) is an antiderivative of f(x).

| Function        | Antiderivative                                                      |  |
|-----------------|---------------------------------------------------------------------|--|
| x <sup>r</sup>  | $\frac{x^{r+1}}{r+1} \qquad (r \text{ a rational number } \neq -1)$ |  |
| $\sin x$        | $-\cos x$                                                           |  |
| $\cos x$        | $\sin x$                                                            |  |
| $\sec^2 x$      | tan x                                                               |  |
| $\sec x \tan x$ | sec x                                                               |  |
| $\csc^2 x$      | $-\cot x$                                                           |  |
| $\csc x \cot x$ | $-\csc x$                                                           |  |

Problem 3

Evaluate

1. 
$$\int_{0}^{1} (2x - 6x^{4} + 5) dx$$
  
2. 
$$\int_{1}^{2} \frac{x^{4} + 1}{x^{2}} dx$$
  
3. 
$$\int_{0}^{1} (4 - \sqrt{x})^{2} dx$$
  
4. 
$$\int_{0}^{\pi/4} \sec x (2 \tan x - 5 \sec x) dx$$

Area below the graph of a Nonnegative  $\boldsymbol{f}$ 

$$f(x) \ge 0$$
 for all  $x$  in  $[a, b]$ .  
 $\Omega$  = region below the graph of  $f$ .



Area of 
$$\Omega = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

where F(x) is an antiderivative of f(x).

#### Problem 4

Find the area bounded above by the graph of  $f(x) = x^2$  and below by the x-axis over the interval [1,3].



Area of the shaded region:  $\int_1^3 x^2 dx = \frac{26}{3}$ 

Area between the graphs of f and g



 $f(x) \ge g(x)$  for all x in [a, b].

 $\Omega =$  region between the graphs of f (Top) and g (Bottom).

Area of 
$$\Omega = \int_{a}^{b} \left[ \text{Top } - \text{Bottom} \right] dx = \int_{a}^{b} \left[ f(x) - g(x) \right] dx.$$

**Problem 5** Find the area between the graphs of y = 4x and  $y = x^3$  over the interval [-2, 2].



$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{d} f(x) dx + \int_{d}^{e} f(x) dx + \int_{e}^{b} f(x) dx$$
  
= Area of  $\Omega_{1}$  - Area of  $\Omega_{2}$  + Area of  $\Omega_{3}$  - Area of  $\Omega_{4}$   
= [Area of  $\Omega_{1}$  + Area of  $\Omega_{3}$ ] - [Area of  $\Omega_{2}$  + Area of  $\Omega_{4}$ ]  
= Area above the *x*-axis - Area below the *x*-axis.

# Problem 6

The graph of y = f(x) is shown below. The region  $\Omega_2$  has area 3 and  $\int_a^c f(x) dx$ is 2. Give the area of region  $\Omega_1$ .



- Give the area bounded between the graph of  $f(x) = x^2 2x$  and the x-axis on [-1, 3].
- Evaluate  $\int_{-1}^{3} (x^2 2x) dx$  and interpret the result in terms of areas.



Indefinite Integral as General Antiderivative

The Indefinite Integral of f In general,

$$\int f(x) \, dx = F(x) + C$$

where F(x) is any antiderivative of f(x) and C is an arbitrary constant.

$$\int x^r dx = \frac{x^{r+1}}{r+1} + C \qquad (r \text{ rational}, r \neq -1)$$

$$\int \sin x \, dx = -\cos x + C \qquad \int \cos x \, dx = \sin x + C$$

$$\int \sec^2 x \, dx = \tan x + C \qquad \int \sec x \tan x \, dx = \sec x + C$$

$$\int \csc^2 x \, dx = -\cot x + C \qquad \int \csc x \cot x \, dx = -\csc x + C$$

1. Find F given that  $F'(x) = \cos 3x$  and  $F(-\pi) = 1$ .

2. Give an antiderivative of  $f(x) = \cos 3x$  whose graph has y-intercept 3.

#### Undoing the Chain Rule: The *u*-Substitution

Note: Most differentiation involves the chain rule, so we should expect that most antidifferentiation will involve

undoing the chain rule [1ex] (the u-Substitution)

If F is an antiderivative for f, then

$$\frac{d}{dx} [F(u(x))] = F'(u(x)) u'(x) = f(u(x)) u'(x)$$
$$\int f(u(x)) u'(x) dx = \int f(u) du = F(u) + C = F(u(x)) + C.$$

The *u*-Substitution

|                                                 | u = g(x),     |                                                                                           |
|-------------------------------------------------|---------------|-------------------------------------------------------------------------------------------|
| Original Integral                               | du = g'(x)dx  | New Integral                                                                              |
| $\int_{f} [g(x)]^r g'(x)  dx$                   | $\rightarrow$ | $\int_{C} u^{r} du = \frac{u^{r+1}}{r+1} + C = \frac{[g(x)]^{r+1}}{r+1} + C  (r \neq -1)$ |
| $\int \sin \left[g(x)\right] g'(x)  dx$         | $\rightarrow$ | $\int \sin u  du = -\cos u + C = -\cos\left[g(x)\right] + C$                              |
| $\int_{a} \cos\left[g(x)\right] g'(x)  dx$      | $\rightarrow$ | $\int_{a} \cos u  du = \sin u + C = \sin \left[g(x)\right] + C$                           |
| $\int_{C} \sec^2 \left[ g(x) \right] g'(x)  dx$ | $\rightarrow$ | $\int_{C} \sec^2 u  du = \tan u + C = \tan \left[ g(x) \right] + C$                       |
| $\int \sec[g(x)] \tan[g(x)]g'(x)  dx$           | $\rightarrow$ | $\int_{a} \sec u  \tan u  du = \sec u + C = \sec \left[g(x)\right] + C$                   |
| $\int \csc^2 \left[ g(x) \right] g'(x)  dx$     | $\rightarrow$ | $\int_{-\infty}^{\infty} \csc^2 u  du = -\cot u + C = -\cot \left[g(x)\right] + C$        |
| $\int \csc[g(x)] \cot[g(x)] g'(x) dx$           | $\rightarrow$ | $\int \csc u \cot u  du = -\csc u + C = -\csc [g(x)] + C$                                 |

#### Problem 9 Calculate

1. 
$$\int \sin x \cos x \, dx$$
  
2. 
$$\int 2x^3 \sec^2(x^4 + 1) \, dx$$
  
3. 
$$\int \sec^3 x \tan x \, dx$$
  
4. 
$$\int x(x-3)^5 \, dx$$

# Substitution in Definite Integrals

The Change of Variables Formula

$$\int_{a}^{b} f(u(x))u'(x) \, dx = \int_{u(a)}^{u(b)} f(u) \, du.$$

We change the limits of integration to reflect the substitution.

### Problem 10

Evaluate

1. 
$$\int_{0}^{2} (x^{2} - 1)(x^{3} - 3x + 2)^{3} dx$$
  
2. 
$$\int_{0}^{1/2} \cos^{3} \pi x \sin \pi x \, dx$$
  
3. 
$$\int_{0}^{\sqrt{3}} x^{5} \sqrt{x^{2} + 1} \, dx$$

#### **Definite Integral and Antiderivative**



F(x) = area from *a* to *x* and F(x + h) = area from a to x + h. Therefore F(x + h) - F(x) = area from *x* to  $x + h \cong f(x) h$  if *h* is small and

$$\frac{F(x+h) - F(x)}{h} \approx \frac{f(x)h}{h} = f(x).$$
$$\frac{d}{dx} \left( \int_{a}^{x} f(t) dt \right) = f(x).$$

# Problem 11

1. Find f(x) such that  $\int_{-2}^{x} f(t) dt = \cos(2x) + 1$ .

2. Give the function f(x) that solves the equation  $\int_2^x (t+1)f(t) dt = \sin(x)$ .

# Properties

$$\frac{d}{dx} \left( \int_{a}^{u} f(t) dt \right) = f(u) \frac{du}{dx}$$
$$\frac{d}{dx} \left( \int_{v}^{b} f(t) dt \right) = -f(v) \frac{dv}{dx}$$
$$\frac{d}{dx} \left( \int_{v}^{u} f(t) dt \right) = f(u) \frac{du}{dx} - f(v) \frac{dv}{dx}$$

Find

1. 
$$\frac{d}{dx} \left( \int_{0}^{x^{3}} \frac{dt}{1+t} \right)$$
  
2. 
$$\frac{d}{dx} \left( \int_{-3}^{x^{2}} (3t - \sin(t^{2})) dt \right)$$
  
3. 
$$\frac{d}{dx} \left( \int_{x}^{2x} \frac{dt}{1+t^{2}} \right)$$

#### Mean-Value Theorems for Integrals

Let  $f_{\text{avg}}$  denote the average or mean value of f on [a, b]. Then

$$f_{\text{avg}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

#### The First Mean-Value Theorems for Integrals

If f is continous on [a, b], then there is at least one number c in (a, b) for which

$$f(c) = f_{\text{avg}}$$



### Problem 13

Give the average value of the function  $f(x) = \sin x$  on the interval  $[0, \pi/2]$ .

#### Problem 14

Give the value of c that satisfies the conclusion of the mean value theorem for integrals for the function  $f(x) = x^2 - 2x + 3$  on the interval [1,4].

Area by Integration with Respect to x:  $f(x) \ge g(x)$ 

Rectangle Area  $[f(x_i^*) - g(x_i^*)]\Delta x_i$ 



Riemann Sum  $\sum [f(x_i^*) - g(x_i^*)] \Delta x_i$ 



area
$$(\Omega) = \int_{a}^{b} [f(x) - g(x)] dx = \lim_{\|P\| \to 0} \sum [f(x_{i}^{*}) - g(x_{i}^{*})] \Delta x_{i}.$$

Area by Integration with Respect to  $y{:}\ F(y) \geq G(y)$ 

Rectangle Area  $[F(y_i^*)-G(y_i^*)]\Delta y_i$ 



Riemann Sum  $\sum [F(y_i^*) - G(y_i^*)] \Delta y_i$ 



area
$$(\Omega) = \int_{c}^{d} [F(y) - G(y)] dy = \lim_{\|P\| \to 0} \sum [F(y_{i}^{*}) - G(y_{i}^{*})] \Delta y_{i}.$$

**Problem 15** Give a formula involving integral(s) in x for the region bounded by y = x - 2 and  $y = \sqrt{x}$ .



**Problem 16** Give a formula involving integral(s) in y for the region bounded by y = x - 2and  $y = \sqrt{x}$ .



Solid of Revolution About the x-Axis: Washer Cylinder Volume:  $\pi([f(x_i^*)]^2 - [g(x_i^*)]^2)\Delta x_i$  [1ex] Riemann Sum:  $\sum \pi([f(x_i^*)]^2 - [g(x_i^*)]^2)\Delta x_i$  [1ex]



Solid of Revolution About the x-Axis: Shell



The integrand  $2\pi y [F(y) - G(y)]$  is the lateral area of the cylinder.

**Problem 17** The region bounded by  $y = x^2$  and y = 2x is rotated around the *x*-axis. Give a formula involving integrals in x for the volume of the solid that is generated.



**Problem 18** The region bounded by  $y = x^2$  and y = 2x is rotated around the *x*-axis. Give a formula involving integrals in y for the volume of the solid that is generated.



Solid of Revolution About the y-Axis: Washer Cylinder Volume:  $\pi([F(y_i^*)]^2 - [G(y_i^*)]^2)\Delta y_i$  [1ex] Riemann Sum:  $\sum \pi([F(y_i^*)]^2 - [G(y_i^*)]^2)\Delta y_i$  [1ex]



Solid of Revolution About the y-Axis: Shell



The integrand  $2\pi x [f(x) - g(x)]$  is the lateral area of the cylinder.

The region bounded by  $y = x^2$  and y = 2x is rotated around the y-axis. Give a formula involving integrals in y for the volume of the solid that is generated.



**Problem 20** The region bounded by  $y = x^2$  and y = 2x is rotated around the *y*-axis. Give a formula involving integrals in *x* for the volume of the solid that is generated.

