Lecture 14
Section 9.6 Curves Given Parametrically

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
http://math.uh.edu/~jiwenhe/Math1432
A parametrized Curve is a path in the xy-plane traced out by the point \((x(t), y(t))\) as the parameter \(t\) ranges over an interval \(I\).

\[C = \{(x(t), y(t)) : t \in I\} \]

Examples

- The graph of a function \(y = f(x), x \in I\), is a curve \(C\) that is parametrized by
 \[
 x(t) = t, \quad y(t) = f(t), \quad t \in I.
 \]

- The graph of a polar equation \(r = \rho(\theta), \theta \in I\), is a curve \(C\) that is parametrized by the functions
 \[
 x(t) = r \cos t = \rho(t) \cos t, \quad y(t) = r \sin t = \rho(t) \sin t, \quad t \in I.
 \]
A parametrized Curve is a path in the xy-plane traced out by the point \((x(t), y(t))\) as the parameter \(t\) ranges over an interval \(I\).

\[C = \{(x(t), y(t)) : t \in I\} \]

Examples

- The graph of a function \(y = f(x), \ x \in I\), is a curve \(C\) that is parametrized by

 \[x(t) = t, \quad y(t) = f(t), \quad t \in I. \]

- The graph of a polar equation \(r = \rho(\theta), \ \theta \in I\), is a curve \(C\) that is parametrized by the functions

 \[x(t) = r \cos t = \rho(t) \cos t, \quad y(t) = r \sin t = \rho(t) \sin t, \quad t \in I. \]
A parametrized Curve is a path in the xy-plane traced out by the point \((x(t), y(t))\) as the parameter \(t\) ranges over an interval \(I\).

\[C = \{(x(t), y(t)) : t \in I\} \]

Examples

- The graph of a function \(y = f(x), x \in I\), is a curve \(C\) that is parametrized by

\[x(t) = t, \quad y(t) = f(t), \quad t \in I. \]

- The graph of a polar equation \(r = \rho(\theta), \theta \in I\), is a curve \(C\) that is parametrized by the functions

\[x(t) = r \cos t = \rho(t) \cos t, \quad y(t) = r \sin t = \rho(t) \sin t, \quad t \in I. \]
A parametrized Curve is a path in the xy-plane traced out by the point \((x(t), y(t))\) as the parameter \(t\) ranges over an interval \(I\).

\[C = \{(x(t), y(t)) : t \in I \} \]

Examples

- The graph of a function \(y = f(x), x \in I\), is a curve \(C\) that is parametrized by
 \[
 x(t) = t, \quad y(t) = f(t), \quad t \in I.
 \]

- The graph of a polar equation \(r = \rho(\theta), \theta \in I\), is a curve \(C\) that is parametrized by the functions
 \[
 x(t) = r \cos t = \rho(t) \cos t, \quad y(t) = r \sin t = \rho(t) \sin t, \quad t \in I.
 \]
Example: Line Segment

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.
Example: Line Segment

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter \(t \) being time.
Examples: Line Segment

Line Segment: $y = 2x, x \in [1, 3]$

- Set $x(t) = t$, then $y(t) = 2t, t \in [1, 3]$
- Set $x(t) = t + 1$, then $y(t) = 2t + 2, t \in [0, 2]$
- Set $x(t) = 3 - t$, then $y(t) = 6 - 2t, t \in [0, 2]$
- Set $x(t) = 3 - 4t$, then $y(t) = 6 - 8t, t \in [0, 1/2]$
- Set $x(t) = 2 - \cos t$, then $y(t) = 4 - 2 \cos t, t \in [0, 4\pi]$

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.
We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.
Example: Line Segment

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.

Line Segment: $y = 2x$, $x \in [1, 3]$

- Set $x(t) = t$, then $y(t) = 2t$, $t \in [1, 3]$
- Set $x(t) = t + 1$, then $y(t) = 2t + 2$, $t \in [0, 2]$
- Set $x(t) = 3 - t$, then $y(t) = 6 - 2t$, $t \in [0, 2]$
- Set $x(t) = 3 - 4t$, then $y(t) = 6 - 8t$, $t \in [0, 1/2]$
- Set $x(t) = 2 - \cos t$, then $y(t) = 4 - 2 \cos t$, $t \in [0, 4\pi]$
Example: Line Segment

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.

Line Segment: $y = 2x$, $x \in [1, 3]$

- Set $x(t) = t$, then $y(t) = 2t$, $t \in [1, 3]$
- Set $x(t) = t + 1$, then $y(t) = 2t + 2$, $t \in [0, 2]$
- Set $x(t) = 3 - t$, then $y(t) = 6 - 2t$, $t \in [0, 2]$
- Set $x(t) = 3 - 4t$, then $y(t) = 6 - 8t$, $t \in [0, 1/2]$
- Set $x(t) = 2 - \cos t$, then $y(t) = 4 - 2\cos t$, $t \in [0, 4\pi]$
Example: Line Segment

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.
Example: Parabola

Parabola Arc: \(x = 1 - y^2, \ -1 \leq y \leq 1 \)

- Set \(y(t) = t \), then \(x(t) = 1 - t^2, \ t \in [-1, 1] \) \(\Rightarrow \) changing the domain to all real \(t \) gives us the whole parabola.
- Set \(y(t) = \cos t \), then \(x(t) = 1 - \cos^2 t, \ t \in [0, \pi] \) \(\Rightarrow \) changing the domain to all real \(t \) does not give us any more of the parabola.
Example: Parabola

Parabola Arc: $x = 1 - y^2$, $-1 \leq y \leq 1$

- Set $y(t) = t$, then $x(t) = 1 - t^2$, $t \in [-1, 1]$ \implies changing the domain to all real t gives us the whole parabola.

- Set $y(t) = \cos t$, then $x(t) = 1 - \cos^2 t$, $t \in [0, \pi]$ \implies changing the domain to all real t does not give us any more of the parabola.
Example: Parabola

Parabola Arc: \(x = 1 - y^2, -1 \leq y \leq 1 \)

- Set \(y(t) = t \), then \(x(t) = 1 - t^2, \ t \in [-1, 1] \Rightarrow \) changing the domain to all real \(t \) gives us the whole parabola.

- Set \(y(t) = \cos t \), then \(x(t) = 1 - \cos^2 t, \ t \in [0, \pi] \Rightarrow \) changing the domain to all real \(t \) does not give us any more of the parabola.
Example: Spiral of Archimedes

The curve is a nonending spiral. Here it is shown in detail from $\theta = 0$ to $\theta = 2\pi$.

The parametric representation is

$$x(t) = t \cos t, \quad y(t) = t \sin t, \quad t \geq 0.$$
Example: Spiral of Archimedes

The curve is a nonending spiral. Here it is shown in detail from $\theta = 0$ to $\theta = 2\pi$.

The parametric representation is

$$x(t) = t \cos t, \quad y(t) = t \sin t, \quad t \geq 0.$$
Example: Spiral of Archimedes

The curve is a nonending spiral. Here it is shown in detail from $\theta = 0$ to $\theta = 2\pi$.

The parametric representation is

$$x(t) = t \cos t, \quad y(t) = t \sin t, \quad t \geq 0.$$
Example: Limaçons

Limaçons (Snails): \(r = a + b \cos \theta \)

The parametric representation is

\[
\begin{align*}
x(t) &= (a + b \cos t) \cos t, \\
y(t) &= (a + b \cos t) \sin t,
\end{align*}
\]

\(t \in [0, 2\pi] \).
Example: Petal Curves

Petal Curves (Flowers): $r = a \cos n\theta$, $r = a \sin n\theta$

The parametric representations are

$x(t) = (a \cos(nt)) \cos t, \quad y(t) = (a \cos(nt)) \sin t, \quad t \in [0, 2\pi].$

$x(t) = (a \sin(nt)) \cos t, \quad y(t) = (a \sin(nt)) \sin t, \quad t \in [0, 2\pi].$
Circles: $C = \{ P : d(P, O) = |a| \}$

Center O at $(0,0) \Rightarrow x^2 + y^2 = a^2 \Rightarrow r = a$

$\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t$

Center O at $(0,a) \Rightarrow x^2 + (y - a)^2 = a^2 \Rightarrow r = 2a \sin \theta$

$\Rightarrow t \in [0, \pi], \quad \begin{cases} x(t) = 2a \sin t \cos t = a \sin 2t, \\ y(t) = 2a \sin t \sin t = a(1 - \cos 2t). \end{cases}$

Another parametric representation is by translation

$\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t + a$
Circles: \[C = \{ P : d(P, O) = |a| \} \]

Center \(O \) at \((0, 0)\) \(\Rightarrow\) \(x^2 + y^2 = a^2\) \(\Rightarrow r = a\)

\[t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t \]

Center \(O \) at \((0, a)\) \(\Rightarrow\) \(x^2 + (y - a)^2 = a^2\) \(\Rightarrow r = 2a \sin \theta\)

\[t \in [0, \pi], \quad x(t) = 2a \sin t \cos t = a \sin 2t, \quad y(t) = 2a \sin t \sin t = a(1 - \cos 2t). \]

Another parametric representation is by translation

\[t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t + a \]
Circles: \(C = \{ P : d(P, O) = |a| \} \)

Center \(O \) at \((0, 0)\) \(\Rightarrow\) \(x^2 + y^2 = a^2\) \(\Rightarrow\) \(r = a\)

\[t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t \]

Center \(O \) at \((0, a)\) \(\Rightarrow\) \(x^2 + (y - a)^2 = a^2\) \(\Rightarrow\) \(r = 2a \sin \theta\)

\[t \in [0, \pi], \quad \begin{cases} x(t) = 2a \sin t \cos t = a \sin 2t, \\ y(t) = 2a \sin t \sin t = a(1 - \cos 2t). \end{cases} \]

Another parametric representation is by translation

\[t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t + a \]
Circles: \(C = \{ P : d(P, O) = |a| \} \)

Center \(O \) at \((0, 0)\) \(\Rightarrow\) \(x^2 + y^2 = a^2 \) \(\Rightarrow r = a\)

\[t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t \]

Center \(O \) at \((0, a)\) \(\Rightarrow\) \(x^2 + (y - a)^2 = a^2 \) \(\Rightarrow r = 2a \sin \theta\)

\[t \in [0, \pi], \quad \left\{ \begin{aligned} x(t) &= 2a \sin t \cos t = a \sin 2t, \\ y(t) &= 2a \sin t \sin t = a(1 - \cos 2t). \end{aligned} \right. \]

Another parametric representation is by translation

\[t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t + a \]
Circles: $C = \{ P : d(P, O) = |a| \}$

Center O at $(0, 0) \Rightarrow x^2 + y^2 = a^2 \Rightarrow r = a$

$\Rightarrow t \in [0, 2\pi]$, $x(t) = a \cos t$, $y(t) = a \sin t$

Center O at $(0, a) \Rightarrow x^2 + (y - a)^2 = a^2 \Rightarrow r = 2a \sin \theta$

$\Rightarrow t \in [0, \pi]$, $\begin{cases} x(t) = 2a \sin t \cos t = a \sin 2t, \\ y(t) = 2a \sin t \sin t = a(1 - \cos 2t). \end{cases}$

Another parametric representation is by translation

$\Rightarrow t \in [0, 2\pi]$, $x(t) = a \cos t$, $y(t) = a \sin t + a$
Circles: \(C = \{ P : d(P, O) = |a| \} \)

Center \(O \) at \((0, 0)\) \(\Rightarrow\) \(x^2 + y^2 = a^2 \) \(\Rightarrow r = a\)

\(\Rightarrow\) \(t \in [0, 2\pi]\), \(x(t) = a \cos t \), \(y(t) = a \sin t \)

Center \(O \) at \((0, a)\) \(\Rightarrow\) \(x^2 + (y - a)^2 = a^2 \) \(\Rightarrow r = 2a \sin \theta\)

\(\Rightarrow\) \(t \in [0, \pi]\), \(\begin{cases} x(t) = 2a \sin t \cos t = a \sin 2t, \\ y(t) = 2a \sin t \sin t = a(1 - \cos 2t). \end{cases} \)

Another parametric representation is by translation

\(\Rightarrow\) \(t \in [0, 2\pi]\), \(x(t) = a \cos t \), \(y(t) = a \sin t + a \)
Circles: \(C = \{ P : d(P, O) = |a| \} \)

Center \(O \) at \((0, 0)\) \(\Rightarrow\) \(x^2 + y^2 = a^2 \) \(\Rightarrow r = a\)

\(\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t\)

Center \(O \) at \((0, a)\) \(\Rightarrow\) \(x^2 + (y - a)^2 = a^2 \) \(\Rightarrow r = 2a \sin \theta\)

\(\Rightarrow t \in [0, \pi], \quad \begin{cases}
 x(t) = 2a \sin t \cos t = a \sin 2t, \\
 y(t) = 2a \sin t \sin t = a(1 - \cos 2t).
\end{cases}\)

Another parametric representation is by translation

\(\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t + a\)
Circles: \(C = \{ P : d(P, O) = |a| \} \)

Center \(O \) at \((0, 0)\) \(\Rightarrow\) \(x^2 + y^2 = a^2\) \(\Rightarrow\) \(r = a\)

\(\Rightarrow\) \(t \in [0, 2\pi]\), \(x(t) = a\cos t,\ y(t) = a\sin t\)

Center \(O \) at \((0, a)\) \(\Rightarrow\) \(x^2 + (y - a)^2 = a^2\) \(\Rightarrow\) \(r = 2a\sin \theta\)

\(\Rightarrow\) \(t \in [0, \pi]\), \(\begin{cases} x(t) = 2a\sin t \cos t = a\sin 2t, \\ y(t) = 2a\sin t \sin t = a(1 - \cos 2t). \end{cases}\)

Another parametric representation is by translation

\(\Rightarrow\) \(t \in [0, 2\pi]\), \(x(t) = a\cos t,\ y(t) = a\sin t + a\)
Circles: $C = \{ P : d(P, O) = |a| \}$

Center O at $(0, 0) \Rightarrow x^2 + y^2 = a^2 \Rightarrow r = a$

$\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t$

Center O at $(a, 0) \Rightarrow (x - a)^2 + y^2 = a^2 \Rightarrow r = 2a \cos \theta$

$\Rightarrow t \in \left[\frac{\pi}{2}, \frac{3\pi}{2} \right], \quad \left\{ \begin{array}{l} x(t) = 2a \cos t \cos t = a(1 + \cos 2t), \\ y(t) = 2a \cos t \sin t = a \sin 2t. \end{array} \right.$

Another parametric representation is by translation

$\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t + a, \quad y(t) = a \sin t.$
Circles: \[C = \{ P : d(P, O) = |a| \} \]

Center \(O \) at \((0, 0)\) \(\Rightarrow\) \(x^2 + y^2 = a^2 \) \(\Rightarrow\) \(r = a\)

\[\Rightarrow \quad t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t \]

Center \(O \) at \((a, 0)\) \(\Rightarrow\) \((x - a)^2 + y^2 = a^2 \) \(\Rightarrow\) \(r = 2a \cos \theta\)

\[\Rightarrow \quad t \in \left[\frac{\pi}{2}, \frac{3\pi}{2} \right], \quad \begin{cases} \ x(t) = 2a \cos t \cos t = a(1 + \cos 2t), \\ \ y(t) = 2a \cos t \sin t = a \sin 2t. \end{cases} \]

Another parametric representation is by translation

\[\Rightarrow \quad t \in [0, 2\pi], \quad x(t) = a \cos t + a, \quad y(t) = a \sin t. \]
Circles: \(C = \{ P : d(P, O) = |a| \} \)

- Center \(O \) at \((0, 0)\) \(\Rightarrow x^2 + y^2 = a^2 \Rightarrow r = a\)
 \[t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t \]

- Center \(O \) at \((a, 0)\) \(\Rightarrow (x - a)^2 + y^2 = a^2 \Rightarrow r = 2a \cos \theta\)
 \[t \in \left[\frac{\pi}{2}, \frac{3\pi}{2} \right], \quad \begin{cases} x(t) = 2a \cos t \cos t = a(1 + \cos 2t), \\ y(t) = 2a \cos t \sin t = a \sin 2t. \end{cases} \]

Another parametric representation is by translation
 \[t \in [0, 2\pi], \quad x(t) = a \cos t + a, \quad y(t) = a \sin t. \]
Circles: $C = \{P : d(P, O) = |a|\}$

Center O at $(0, 0) \Rightarrow x^2 + y^2 = a^2 \Rightarrow r = a$

$\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t$

Center O at $(a, 0) \Rightarrow (x - a)^2 + y^2 = a^2 \Rightarrow r = 2a \cos \theta$

$\Rightarrow t \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right], \quad \begin{cases} x(t) = 2a \cos t \cos t = a(1 + \cos 2t), \\ y(t) = 2a \cos t \sin t = a \sin 2t. \end{cases}$

Another parametric representation is by translation

$\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t + a, \quad y(t) = a \sin t.$
A **ellipse** is the set of points P in a plane that the sum of whose distances from two fixed points (the foci F_1 and F_2) separated by a distance $2c$ is a given positive constant $2a$.

$$E = \{ P : |d(P, F_1) + d(P, F_2)| = 2a \}$$

With F_1 at $(-c, 0)$ and F_2 at $(c, 0)$ and setting $b = \sqrt{a^2 - c^2}$,

$$E = \left\{ (x, y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}$$
A **ellipse** is the set of points P in a plane that the sum of whose distances from two fixed points (the foci F_1 and F_2) separated by a distance $2c$ is a given positive constant $2a$.

$$E = \{ P : |d(P, F_1) + d(P, F_2)| = 2a \}$$

With F_1 at $(-c, 0)$ and F_2 at $(c, 0)$ and setting $b = \sqrt{a^2 - c^2}$,

$$E = \left\{ (x, y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}$$
A **ellipse** is the set of points P in a plane that the sum of whose distances from two fixed points (the foci F_1 and F_2) separated by a distance $2c$ is a given positive constant $2a$.

$$E = \left\{ P : |d(P, F_1) + d(P, F_2)| = 2a \right\}$$

With F_1 at $(-c, 0)$ and F_2 at $(c, 0)$ and setting $b = \sqrt{a^2 - c^2}$,

$$E = \left\{ (x, y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}$$
The ellipse can also be given by a simple parametric form analogous to that of a circle, but with the x and y coordinates having different scalings,

$$x = a \cos t, \quad y = b \sin t, \quad t \in (0, 2\pi).$$

Note that $\cos^2 t + \sin^2 t = 1$.
A hyperbola is the set of points P in a plane that the difference of whose distances from two fixed points (the foci F_1 and F_2) separated by a distance $2c$ is a given positive constant $2a$.

$$H = \{ P : |d(P, F_1) - d(P, F_2)| = 2a \}$$

With F_1 at $(-c, 0)$ and F_2 at $(c, 0)$ and setting $b = \sqrt{c^2 - a^2}$, we have

$$H = \left\{ (x, y) : \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right\}$$
Hyperbolas

A **hyperbola** is the set of points \(P \) in a plane that the difference of whose distances from two fixed points (the foci \(F_1 \) and \(F_2 \)) separated by a distance \(2c \) is a given positive constant \(2a \).

\[
H = \left\{ P : |d(P, F_1) - d(P, F_2)| = 2a \right\}
\]

With \(F_1 \) at \((-c, 0)\) and \(F_2 \) at \((c, 0)\) and setting \(b = \sqrt{c^2 - a^2} \), we have

\[
H = \left\{ (x, y) : \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right\}
\]
A hyperbola is the set of points P in a plane that the difference of whose distances from two fixed points (the foci F_1 and F_2) separated by a distance $2c$ is a given positive constant $2a$.

$$H = \left\{ P : |d(P, F_1) - d(P, F_2)| = 2a \right\}$$

With F_1 at $(-c, 0)$ and F_2 at $(c, 0)$ and setting $b = \sqrt{c^2 - a^2}$, we have

$$H = \left\{ (x, y) : \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right\}$$
The right branch of a hyperbola can be parametrized by
\[x = a \cosh t, \quad y = b \sinh t, \quad t \in (-\infty, \infty). \]

The left branch can be parametrized by
\[x = -a \cosh t, \quad y = b \sinh t, \quad t \in (-\infty, \infty). \]

Note that \(\cosh t = \frac{1}{2} (e^t + e^{-t}) \), \(\sinh t = \frac{1}{2} (e^t - e^{-t}) \) and \(\cosh^2 t - \sinh^2 t = 1 \).
Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

The right branch of a hyperbola can be parametrized by

\[x = a \cosh t, \quad y = b \sinh t, \quad t \in (-\infty, \infty). \]

The left branch can be parametrized by

\[x = -a \cosh t, \quad y = b \sinh t, \quad t \in (-\infty, \infty). \]

Note that \(\cosh t = \frac{1}{2} (e^t + e^{-t}) \), \(\sinh t = \frac{1}{2} (e^t - e^{-t}) \) and \(\cosh^2 t - \sinh^2 t = 1 \).
Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

The right branch of a hyperbola can be parametrized by

\[x = a \cosh t, \quad y = b \sinh t, \quad t \in (-\infty, \infty). \]

The left branch can be parametrized by

\[x = -a \cosh t, \quad y = b \sinh t, \quad t \in (-\infty, \infty). \]

Note that \(\cosh t = \frac{1}{2}(e^t + e^{-t}) \), \(\sinh t = \frac{1}{2}(e^t - e^{-t}) \) and \(\cosh^2 t - \sinh^2 t = 1 \).
The right branch of a hyperbola can be parametrized by
\[x = a \cosh t, \quad y = b \sinh t, \quad t \in (-\infty, \infty). \]

The left branch can be parametrized by
\[x = -a \cosh t, \quad y = b \sinh t, \quad t \in (-\infty, \infty). \]

Note that \(\cosh t = \frac{1}{2} (e^t + e^{-t}) \), \(\sinh t = \frac{1}{2} (e^t - e^{-t}) \) and \(\cosh^2 t - \sinh^2 t = 1 \).
Another parametric representation for the right branch of the hyperbola is

\[x = a \sec t, \quad y = b \tan t, \quad t \in (-\pi/2, \pi/2). \]

Parametric equations for the left branch is

\[x = -a \sec t, \quad y = b \tan t, \quad t \in (-\pi/2, \pi/2). \]
Another parametric representation for the right branch of the hyperbola is

\[x = a \sec t, \quad y = b \tan t, \quad t \in (-\pi/2, \pi/2). \]

Parametric equations for the left branch is

\[x = -a \sec t, \quad y = b \tan t, \quad t \in (-\pi/2, \pi/2). \]
Another parametric representation for the right branch of the hyperbola is

\[x = a \sec t, \quad y = b \tan t, \quad t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right). \]

Parametric equations for the left branch is

\[x = -a \sec t, \quad y = b \tan t, \quad t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right). \]
A lemniscate is the set of points \(P \) in a plane that the product of whose distances from two fixed points (the foci \(F_1 \) and \(F_2 \)) a distance \(2c \) away is the constant \(c^2 \).

\[
R = \{ P : d(P, F_1) \cdot d(P, F_2) = c^2 \}
\]

With \(F_1 \) at \((-c, 0)\) and \(F_2 \) at \((c, 0)\),

\[
(x^2 + y^2)^2 = 2c^2(x^2 - y^2)
\]

Switching to polar coordinates gives

\[
r^2 = 2c^2 \cos 2\theta, \quad \theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4} \right) \cup \left(\frac{3\pi}{4}, \frac{5\pi}{4} \right)
\]

The parametric equations for the lemniscate with \(a^2 = 2c^2 \) is

\[
x = \frac{a \cos t}{1 + \sin^2 t}, \quad y = \frac{a \sin t \cos t}{1 + \sin^2 t}, \quad t \in (0, 2\pi).
\]
A lemniscate is the set of points \(P \) in a plane that the product of whose distances from two fixed points (the foci \(F_1 \) and \(F_2 \)) a distance \(2c \) away is the constant \(c^2 \).

\[
R = \{ P : d(P, F_1) \cdot d(P, F_2) = c^2 \}
\]

With \(F_1 \) at \((-c, 0)\) and \(F_2 \) at \((c, 0)\),

\[
(x^2 + y^2)^2 = 2c^2(x^2 - y^2)
\]

Switching to polar coordinates gives

\[
r^2 = 2c^2 \cos 2\theta, \quad \theta \in (-\frac{\pi}{4}, \frac{\pi}{4}) \cup \left(\frac{3\pi}{4}, \frac{5\pi}{4} \right)
\]

The parametric equations for the lemniscate with \(a^2 = 2c^2 \) is

\[
x = \frac{a \cos t}{1 + \sin^2 t}, \quad y = \frac{a \sin t \cos t}{1 + \sin^2 t}, \quad t \in (0, 2\pi).
\]
A **lemniscate** is the set of points P in a plane that the product of whose distances from two fixed points (the foci F_1 and F_2) a distance $2c$ away is the constant c^2.

$$R = \{ P : d(P, F_1) \cdot d(P, F_2) = c^2 \}$$

With F_1 at $(-c, 0)$ and F_2 at $(c, 0)$,

$$(x^2 + y^2)^2 = 2c^2(x^2 - y^2)$$

Switching to polar coordinates gives

$$r^2 = 2c^2 \cos 2\theta, \quad \theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \cup \left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$$

The parametric equations for the lemniscate with $a^2 = 2c^2$ is

$$x = \frac{a \cos t}{1 + \sin^2 t}, \quad y = \frac{a \sin t \cos t}{1 + \sin^2 t}, \quad t \in (0, 2\pi).$$
Lemniscates (Ribbons): \(r^2 = a^2 \cos 2\theta \)

A lemniscate is the set of points \(P \) in a plane that the product of whose distances from two fixed points (the foci \(F_1 \) and \(F_2 \)) a distance \(2c \) away is the constant \(c^2 \).

\[
R = \{ P : d(P, F_1) \cdot d(P, F_2) = c^2 \}
\]

With \(F_1 \) at \((-c, 0)\) and \(F_2 \) at \((c, 0)\),

\[
(x^2 + y^2)^2 = 2c^2(x^2 - y^2)
\]

Switching to polar coordinates gives

\[
r^2 = 2c^2 \cos 2\theta, \quad \theta \in (-\frac{\pi}{4}, \frac{\pi}{4}) \cup (\frac{3\pi}{4}, \frac{5\pi}{4})
\]

The parametric equations for the lemniscate with \(a^2 = 2c^2 \) is

\[
x = \frac{a \cos t}{1 + \sin^2 t}, \quad y = \frac{a \sin t \cos t}{1 + \sin^2 t}, \quad t \in (0, 2\pi).
\]
A lemniscate is the set of points P in a plane that the product of whose distances from two fixed points (the foci F_1 and F_2) a distance $2c$ away is the constant c^2.

$$R = \left\{ P : d(P, F_1) \cdot d(P, F_2) = c^2 \right\}$$

With F_1 at $(-c, 0)$ and F_2 at $(c, 0)$,

$$(x^2 + y^2)^2 = 2c^2(x^2 - y^2)$$

Switching to polar coordinates gives

$$r^2 = 2c^2 \cos 2\theta, \quad \theta \in \left(-\frac{\pi}{4}, \frac{\pi}{4} \right) \cup \left(\frac{3\pi}{4}, \frac{5\pi}{4} \right)$$

The parametric equations for the lemniscate with $a^2 = 2c^2$ is

$$x = \frac{a \cos t}{1 + \sin^2 t}, \quad y = \frac{a \sin t \cos t}{1 + \sin^2 t}, \quad t \in (0, 2\pi).$$
Outline

- Parametrized curve
 - Parametrized curve
 - Examples

- Locus
 - Circles
 - Ellipses
 - Hyperbolas
 - Lemniscates