Lecture 16
Section 9.8 Arc Length and Speed

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
http://math.uh.edu/~jiwenhe/Math1432

What is the length of this curve?
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I\} \).

The length of \(C \) is

\[
L(C) = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt
\]

\[
d(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}
\]

\[
= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}}\right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}}\right]^2} (t_i - t_{i-1})
\]

\[
= \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i
\]

\[
L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)
\]

\[
= \sum_{i=1}^n \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i \to L(C) \quad \text{as } \Delta t_i \to 0.
\]
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I \} \).

The length of \(C \) is
\[
L(C) = \int_a^b \sqrt{\left[x'(t) \right]^2 + \left[y'(t) \right]^2} \, dt
\]

\[
d'(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}
\]
\[
= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}} \right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}} \right]^2} (t_i - t_{i-1})
\]
\[
= \sqrt{\left[x'(t_i^*) \right]^2 + \left[y'(t_i^*) \right]^2} \Delta t_i
\]

\[
L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)
\]
\[
= \sum_{i=1}^n \sqrt{\left[x'(t_i^*) \right]^2 + \left[y'(t_i^*) \right]^2} \Delta t_i \to L(C) \quad \text{as } \Delta t_i \to 0.
\]
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I\} \).

The length of \(C \) is

\[
L(C) = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt
\]

\[
d'(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}
\]

\[
= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}} \right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}} \right]^2} (t_i - t_{i-1})
\]

\[
= \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i
\]

\[
L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)
\]

\[
= \sum_{i=1}^{n} \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i \to L(C) \quad \text{as} \quad \Delta t_i \to 0.
\]
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I\} \).

The length of \(C \) is

\[
L(C) = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt
\]

\[
d(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}
\]

\[
= \sqrt{\left(\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}}\right)^2 + \left(\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}}\right)^2} \, (t_i - t_{i-1})
\]

\[
= \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i
\]

\[
L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)
\]

\[
= \sum_{i=1}^n \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i \to L(C) \quad \text{as} \quad \Delta t_i \to 0.
\]
Let $C = \{(x(t), y(t)) : t \in I\}$. The length of C is

$$L(C) = \int_a^b \sqrt{\left[\frac{dx}{dt}(t)\right]^2 + \left[\frac{dy}{dt}(t)\right]^2} \, dt$$

$$d(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}$$

$$= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}}\right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}}\right]^2} (t_i - t_{i-1})$$

$$= \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i$$

$$L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)$$

$$= \sum_{i=1}^n \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i \to L(C) \quad \text{as } \Delta t_i \to 0.$$
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I\} \).

The length of \(C \) is

\[
L(C) = \int_{a}^{b} \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt
\]

\[
d(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}
\]

\[
= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}}\right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}}\right]^2 (t_i - t_{i-1})}
\]

\[
= \sqrt{\left[x'(t_i^*)\right]^2 + \left[y'(t_i^*)\right]^2 \Delta t_i}
\]

\[
L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)
\]

\[
= \sum_{i=1}^{n} \sqrt{\left[x'(t_i^*)\right]^2 + \left[y'(t_i^*)\right]^2 \Delta t_i} \to L(C) \quad \text{as} \ \Delta t_i \to 0.
\]
Arc Length Formulas

Let \(C = \{ (x(t), y(t)) : t \in I \} \).

The length of \(C \) is

\[
L(C) = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt
\]

\[
d(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}
\]

\[
= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}} \right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}} \right]^2} \, (t_i - t_{i-1})
\]

\[
= \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \, \Delta t_i
\]

\[
L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)
\]

\[
= \sum_{i=1}^{n} \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \, \Delta t_i \to L(C) \quad \text{as } \Delta t_i \to 0.
\]
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I\} \).

The length of \(C \) is

\[
L(C) = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt
\]

\[
d(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}
\]

\[
= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}} \right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}} \right]^2 (t_i - t_{i-1})}
\]

\[
L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)
\]

\[
= \sum_{i=1}^{n} \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i \rightarrow L(C) \quad \text{as} \ \Delta t_i \rightarrow 0.
\]
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I \} \).

The length of \(C \) is

\[
L(C) = \int_a^b \sqrt{\left[x'(t) \right]^2 + \left[y'(t) \right]^2} \, dt
\]

\[
d(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}
\]

\[
= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}} \right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}} \right]^2} (t_i - t_{i-1})
\]

\[
= \sqrt{\left[x'(t_i^*) \right]^2 + \left[y'(t_i^*) \right]^2} \Delta t_i
\]

\[
L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)
\]

\[
= \sum_{i=1}^{n} \sqrt{\left[x'(t_i^*) \right]^2 + \left[y'(t_i^*) \right]^2} \Delta t_i \rightarrow L(C) \text{ as } \Delta t_i \rightarrow 0.
\]
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I\} \).

The length of \(C \) is

\[
L(C) = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt
\]

d\((P_{i-1}, P_i)\) = \(\sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}\)

\[
= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}}\right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}}\right]^2} (t_i - t_{i-1})
\]

\[
= \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i
\]

\[
L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)
\]

\[
= \sum_{i=1}^{n} \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i \rightarrow L(C) \quad \text{as} \quad \Delta t_i \rightarrow 0.
\]
Arc Length Formulas

Let $C = \{(x(t), y(t)) : t \in I\}$.

The length of C is

$$L(C) = \int_a^b \sqrt{\left[x'(t) \right]^2 + \left[y'(t) \right]^2} \, dt$$

$$d(P_{i-1}, P_i) = \sqrt{[x(t_i) - x(t_{i-1})]^2 + [y(t_i) - y(t_{i-1})]^2}$$

$$= \sqrt{\left[\frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}} \right]^2 + \left[\frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}} \right]^2} (t_i - t_{i-1})$$

$$= \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i$$

$$L(\gamma) = d(P_0, P_1) + \cdots + d(P_{i-1}, P_i) + \cdots + d(P_{n-1}, P_n)$$

$$= \sum_{i=1}^n \sqrt{[x'(t_i^*)]^2 + [y'(t_i^*)]^2} \Delta t_i \to L(C) \quad \text{as} \quad \Delta t_i \to 0.$$
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I\} \).

The length of \(C \) is

\[
L(C) = \int_{a}^{b} \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt
\]

Definition

- We define the element of length \(ds \)
 \[
 ds = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt
 \]

- The total arc length is
 \[
 L(C) = \int ds = \int_{a}^{b} \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2} \, dt
 \]
Arc Length Formulas

Let \(C = \{(x(t), y(t)) : t \in I \} \).

The length of \(C \) is

\[
L(C) = \int_a^b \sqrt{\left[x'(t) \right]^2 + \left[y'(t) \right]^2} \, dt
\]

Definition

- We define the element of length \(ds \)

\[
ds = \sqrt{\left[x'(t) \right]^2 + \left[y'(t) \right]^2} \, dt
\]

- The total arc length is

\[
L(C) = \int ds = \int_a^b \sqrt{\left[x'(t) \right]^2 + \left[y'(t) \right]^2} \, dt
\]
Arc Length and Speed Along a Plane Curve

Parametrization by the Motion

- Imaging an object moving along the curve C.
- Let $r(t) = (x(t), y(t))$ the position of the object at time t.
- The velocity of the object at time t is $v(t) = r'(t) = (x'(t), y'(t))$.

Arc Length and Speed Along a Plane Curve

- The speed of the object at time t is $v(t) = \|v(t)\| = \sqrt{[x'(t)]^2 + [y'(t)]^2}$.
- The distance traveled by the object from time zero to any later time t is $s(t) = \int ds = \int_0^t \sqrt{[x'(u)]^2 + [y'(u)]^2} du = \int_0^t v(u) du$.
- We have $ds = v(t) \, dt$.

What is the length of this curve?
Arc Length and Speed Along a Plane Curve

Parametrization by the Motion

- **Imaging an object** moving along the curve \(C \).
- Let \(r(t) = (x(t), y(t)) \) the position of the object at time \(t \).
- The velocity of the object at time \(t \) is \(v(t) = r'(t) = (x'(t), y'(t)) \).

Arc Length and Speed Along a Plane Curve

- The speed of the object at time \(t \) is
 \[
 v(t) = \|v(t)\| = \sqrt{[x'(t)]^2 + [y'(t)]^2}.
 \]
- The distance traveled by the object from time zero to any later time \(t \) is
 \[
 s(t) = \int ds = \int_0^t \sqrt{[x'(u)]^2 + [y'(u)]^2} \, du = \int_0^t v(u) \, du.
 \]
- We have \(ds = v(t) \, dt \).
Arc Length and Speed Along a Plane Curve

Parametrization by the Motion

- Imaging an object **moving along the curve** \(C \).
- Let \(\mathbf{r}(t) = (x(t), y(t)) \) the **position** of the object at time \(t \).
- The velocity of the object at time \(t \) is
 \[\mathbf{v}(t) = \mathbf{r}'(t) = (x'(t), y'(t)) \].

Arc Length and Speed Along a Plane Curve

- The speed of the object at time \(t \) is
 \[\mathbf{v}(t) = \|\mathbf{v}(t)\| = \sqrt{[x'(t)]^2 + [y'(t)]^2} \].
- The distance traveled by the object from time zero to any later time \(t \) is
 \[s(t) = \int ds = \int_0^t \sqrt{[x'(u)]^2 + [y'(u)]^2} du = \int_0^t \mathbf{v}(u) du. \]
- We have \(ds = \mathbf{v}(t) \, dt. \)
Arc Length and Speed Along a Plane Curve

Parametrization by the Motion

- Imaging an object moving along the curve \(C \).
- Let \(\mathbf{r}(t) = (x(t), y(t)) \) the position of the object at time \(t \).
- The velocity of the object at time \(t \) is \(\mathbf{v}(t) = \mathbf{r}'(t) = (x'(t), y'(t)) \).

Arc Length and Speed Along a Plane Curve

- The speed of the object at time \(t \) is \(\mathbf{v}(t) = \|\mathbf{v}(t)\| = \sqrt{[x'(t)]^2 + [y'(t)]^2} \).
- The distance traveled by the object from time zero to any later time \(t \) is \(s(t) = \int_0^t ds = \int_0^t \sqrt{[x'(u)]^2 + [y'(u)]^2} \, du = \int_0^t \mathbf{v}(u) \, du \).
- We have \(ds = \mathbf{v}(t) \, dt \).
Arc Length and Speed Along a Plane Curve

Parametrization by the Motion

- Imaging an object moving along the curve C.
- Let $r(t) = (x(t), y(t))$ the position of the object at time t.
- The velocity of the object at time t is $v(t) = r'(t) = (x'(t), y'(t))$.

The speed of the object at time t is $v(t) = \|v(t)\| = \sqrt{[x'(t)]^2 + [y'(t)]^2}$.

The distance traveled by the object from time zero to any later time t is

$$s(t) = \int ds = \int_0^t \sqrt{[x'(u)]^2 + [y'(u)]^2} \, du = \int_0^t v(u) \, du.$$

We have $ds = v(t) \, dt$.
Arc Length and Speed Along a Plane Curve

Parametrization by the Motion

- Imaging an object moving along the curve \(C \).
- Let \(\mathbf{r}(t) = (x(t), y(t)) \) the position of the object at time \(t \).
- The velocity of the object at time \(t \) is \(\mathbf{v}(t) = \mathbf{r}'(t) = (x'(t), y'(t)) \).

Arc Length and Speed Along a Plane Curve

- The speed of the object at time \(t \) is
 \[
 v(t) = \| \mathbf{v}(t) \| = \sqrt{[x'(t)]^2 + [y'(t)]^2}.
 \]
- The distance traveled by the object from time zero to any later time \(t \) is
 \[
 s(t) = \int ds = \int_0^t \sqrt{[x'(u)]^2 + [y'(u)]^2} \, du = \int_0^t \mathbf{v}(u) \, du.
 \]
- We have \(ds = v(t) \, dt \).
Arc Length and Speed Along a Plane Curve

Parametrization by the Motion
- Imaging an object moving along the curve C.
- Let $\mathbf{r}(t) = (x(t), y(t))$ the position of the object at time t.
- The velocity of the object at time t is $\mathbf{v}(t) = \mathbf{r}'(t) = (x'(t), y'(t))$.

Arc Length and Speed Along a Plane Curve
- The speed of the object at time t is $v(t) = \|\mathbf{v}(t)\| = \sqrt{[x'(t)]^2 + [y'(t)]^2}$.
- The distance traveled by the object from time zero to any later time t is $s(t) = \int ds = \int_{0}^{t} \sqrt{[x'(u)]^2 + [y'(u)]^2} \, du = \int_{0}^{t} v(u) \, du$.
- We have $ds = v(t) \, dt$.

Jiwen He, University of Houston
Math 1432 – Section 26626, Lecture 16
March 6, 2008 3 / 11
Length of the Arc on the Graph of $y = f(x)$

The length of the arc on the graph from a to x is

$$s(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} \, dt.$$

$$\Rightarrow \, ds = \sqrt{1 + [f'(x)]^2} \, dx.$$

Proof.

Set $x(t) = t$, $y(t) = f(t)$, $t \in [a, b]$.

Since $x'(t) = 1$, $y'(t) = f'(t)$, then

$$s(x) = \int_{a}^{x} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} \, dt.$$
Length of the Arc on the Graph of \(y = f(x) \)

Length of \(y = f(x), \ x \in [a, b] \)

The length of the arc on the graph from \(a \) to \(x \) is

\[
s(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} \, dt.
\]

\[\Rightarrow \quad ds = \sqrt{1 + [f'(x)]^2} \, dx.
\]

Proof.

Set \(x(t) = t, \ y(t) = f(t), \ t \in [a, b] \).

Since \(x'(t) = 1, \ y'(t) = f'(t) \), then

\[
s(x) = \int_{a}^{x} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} \, dt.
\]
Length of the Arc on the Graph of $y = f(x)$

The length of the arc on the graph from a to x is

$$s(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} \, dt.$$

Then

$$ds = \sqrt{1 + [f'(x)]^2} \, dx.$$

Proof.

Set $x(t) = t$, $y(t) = f(t)$, $t \in [a, b]$.

Since $x'(t) = 1$, $y'(t) = f'(t)$, then

$$s(x) = \int_{a}^{x} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{a}^{x} \sqrt{1 + [f'(t)]^2} \, dt.$$
Length of the Arc on the Graph of $y = f(x)$

The length of the arc on the graph from a to x is

$$s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt.$$

$$\Rightarrow \quad ds = \sqrt{1 + [f'(x)]^2} \, dx.$$

Proof.

Set $x(t) = t$, $y(t) = f(t)$, $t \in [a, b]$.

Since $x'(t) = 1$, $y'(t) = f'(t)$, then

$$s(x) = \int_a^x \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt.$$
Length of the Arc on the Graph of $y = f(x)$

The length of the arc on the graph from a to x is

$$s(x) = \int_a^x \sqrt{1 + \left[f'(t)\right]^2} \, dt.$$

$$\Rightarrow \quad ds = \sqrt{1 + \left[f'(x)\right]^2} \, dx.$$

Proof.

Set $x(t) = t$, $y(t) = f(t)$, $t \in [a, b]$.

Since $x'(t) = 1$, $y'(t) = f'(t)$, then

$$s(x) = \int_a^x \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_a^x \sqrt{1 + \left[f'(t)\right]^2} \, dt.$$
Length of the Arc on the Graph of $y = f(x)$

The length of the arc on the graph from a to x is

$$s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt.$$

$$\Rightarrow \quad ds = \sqrt{1 + [f'(x)]^2} \, dx.$$

Proof.

Set $x(t) = t$, $y(t) = f(t)$, $t \in [a, b]$.

Since $x'(t) = 1$, $y'(t) = f'(t)$, then

$$s(x) = \int_a^x \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt.$$
Length of the Arc on the Graph of \(y = f(x) \)

Length of \(y = f(x), \ x \in [a, b] \)

The length of the arc on the graph from \(a \) to \(x \) is

\[
s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt.
\]

\[
\Rightarrow \quad ds = \sqrt{1 + [f'(x)]^2} \, dx.
\]

Example

The length of the parabolic arc: \(f(x) = x^2, \ x \in [0, 1] \), is given

\[
\int_0^1 \sqrt{1 + [f'(x)]^2} \, dx = \int_0^1 \sqrt{1 + 4x^2} \, dx
\]

\[
= \left[x \sqrt{\frac{1}{4} + x^2} + \frac{1}{4} \ln(x + \sqrt{\frac{1}{4} + x^2}) \right]_0^1 = \frac{1}{2} \sqrt{5} + \frac{1}{4} \ln(2 + \sqrt{5}).
\]
Length of the Arc on the Graph of $y = f(x)$

Length of $y = f(x)$, $x \in [a, b]$

The length of the arc on the graph from a to x is

$$s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt.$$

$$\Rightarrow \quad ds = \sqrt{1 + [f'(x)]^2} \, dx.$$

Example

The length of the parabolic arc: $f(x) = x^2$, $x \in [0, 1]$, is given

$$\int_0^1 \sqrt{1 + [f'(x)]^2} \, dx = \int_0^1 \sqrt{1 + 4x^2} \, dx$$

$$= \left[x\sqrt{\frac{1}{4} + x^2} + \frac{1}{4} \ln(x + \sqrt{\frac{1}{4} + x^2}) \right]_0^1 = \frac{1}{2} \sqrt{5} + \frac{1}{4} \ln(2 + \sqrt{5}).$$
Length of the Arc on the Graph of $y = f(x)$

The length of the arc on the graph from a to x is

$$s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt.$$

$$\Rightarrow \quad ds = \sqrt{1 + [f'(x)]^2} \, dx.$$

Example

The length of the parabolic arc: $f(x) = x^2$, $x \in [0, 1]$, is given

$$\int_0^1 \sqrt{1 + [f'(x)]^2} \, dx = \int_0^1 \sqrt{1 + 4x^2} \, dx$$

$$= \left[x \sqrt{\frac{1}{4} + x^2} + \frac{1}{4} \ln(x + \sqrt{\frac{1}{4} + x^2}) \right]_0^1 = \frac{1}{2} \sqrt{5} + \frac{1}{4} \ln(2 + \sqrt{5}).$$
Length of the Arc on the Graph of \(y = f(x) \)

Length of \(y = f(x), \ x \in [a, b] \)

The length of the arc on the graph from \(a \) to \(x \) is

\[
s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt.
\]

\[\Rightarrow ds = \sqrt{1 + [f'(x)]^2} \, dx.\]

Example

- The length of the parabolic arc: \(f(x) = x^2, \ x \in [0, 1] \), is given

\[
\int_0^1 \sqrt{1 + [f'(x)]^2} \, dx = \int_0^1 \sqrt{1 + 4x^2} \, dx
\]

\[
= \left[x\sqrt{\frac{1}{4} + x^2} + \frac{1}{4} \ln(x + \sqrt{\frac{1}{4} + x^2}) \right]_0^1 = \frac{1}{2} \sqrt{5} + \frac{1}{4} \ln(2 + \sqrt{5}).
\]
Length of the Arc on the Graph of $y = f(x)$

Length of $y = f(x)$, $x \in [a, b]$

The length of the arc on the graph from a to x is

$$s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} \, dt.$$

$$\Rightarrow \quad ds = \sqrt{1 + [f'(x)]^2} \, dx.$$

Example

The length of the parabolic arc: $f(x) = x^2$, $x \in [0, 1]$, is given

$$\int_0^1 \sqrt{1 + [f'(x)]^2} \, dx = \int_0^1 \sqrt{1 + 4x^2} \, dx$$

$$= \left[x\sqrt{\frac{1}{4} + x^2} + \frac{1}{4} \ln(x + \sqrt{\frac{1}{4} + x^2}) \right]_0^1 = \frac{1}{2} \sqrt{5} + \frac{1}{4} \ln(2 + \sqrt{5}).$$
Length of the Arc on the Graph of $r = \rho(\theta)$

The length of the arc on the graph from α to θ is

$$s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.$$

$\Rightarrow \quad ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta$

Proof.

Set $x(t) = \rho(t) \cos t$, $y(t) = \rho(t) \sin t$, $t \in [\alpha, \beta]$.

Since $[x'(t)]^2 + [y'(t)]^2 = [\rho(t)]^2 + [\rho'(t)]^2$, then

$$s(\theta) = \int_{\alpha}^{\theta} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{\alpha}^{\beta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.$$
Length of the Arc on the Graph of \(r = \rho(\theta) \)

The length of the arc on the graph from \(\alpha \) to \(\theta \) is

\[
s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]

\[
\Rightarrow \quad ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta.
\]

Proof.

Set \(x(t) = \rho(t) \cos t, \, y(t) = \rho(t) \sin t, \, t \in [\alpha, \beta] \).

Since \([x'(t)]^2 + [y'(t)]^2 = [\rho(t)]^2 + [\rho'(t)]^2 \), then

\[
s(\theta) = \int_{\alpha}^{\theta} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]
Length of the Arc on the Graph of \(r = \rho(\theta) \)

The length of the arc on the graph from \(\alpha \) to \(\theta \) is

\[
 s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]

\[
 \Rightarrow \quad ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta
\]

Proof.

Set \(x(t) = \rho(t) \cos t, \; y(t) = \rho(t) \sin t, \; t \in [\alpha, \beta] \).

Since \([x'(t)]^2 + [y'(t)]^2 = [\rho(t)]^2 + [\rho'(t)]^2 \), then

\[
 s(\theta) = \int_{\alpha}^{\theta} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{\alpha}^{\beta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]
Length of the Arc on the Graph of \(r = \rho(\theta) \)

The length of the arc on the graph from \(\alpha \) to \(\theta \) is

\[
s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]

\[
\Rightarrow \quad ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta.
\]

Proof.

Set \(x(t) = \rho(t) \cos t \), \(y(t) = \rho(t) \sin t \), \(t \in [\alpha, \beta] \).

Since \([x'(t)]^2 + [y'(t)]^2 = [\rho(t)]^2 + [\rho'(t)]^2 \), then

\[
s(\theta) = \int_{\alpha}^{\theta} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{\alpha}^{\beta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]
Length of the Arc on the Graph of $r = \rho(\theta)$

Length of $r = \rho(\theta)$, $\theta \in [\alpha, \beta]$

The length of the arc on the graph from α to θ is

$$s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.$$

$$\Rightarrow \, ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta$$

Proof.

Set $x(t) = \rho(t) \cos t$, $y(t) = \rho(t) \sin t$, $t \in [\alpha, \beta]$.

Since $[x'(t)]^2 + [y'(t)]^2 = [\rho(t)]^2 + [\rho'(t)]^2$, then

$$s(\theta) = \int_{\alpha}^{\theta} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{\alpha}^{\beta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.$$
Length of the Arc on the Graph of \(r = \rho(\theta) \)

Length of \(r = \rho(\theta), \theta \in [\alpha, \beta] \)

The length of the arc on the graph from \(\alpha \) to \(\theta \) is

\[
\text{s}(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]

\[
\Rightarrow \quad ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta
\]

Proof.

Set \(x(t) = \rho(t) \cos t, \quad y(t) = \rho(t) \sin t, \quad t \in [\alpha, \beta]. \)

Since \([x'(t)]^2 + [y'(t)]^2 = [\rho(t)]^2 + [\rho'(t)]^2 \), then

\[
\text{s}(\theta) = \int_{\alpha}^{\theta} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{\alpha}^{\beta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]
Length of the Arc on the Graph of \(r = \rho(\theta) \)

The length of the arc on the graph from \(\alpha \) to \(\theta \) is

\[
s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]

\[
\Rightarrow \quad ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta
\]

Spiral of Archimedes: \(r = \theta, \theta \geq 0 \)

- The length of the arc: \(r = \theta, \theta \in [0, 2\pi] \), is given

\[
\int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{2\pi} \sqrt{1 + \theta^2} \, d\theta
\]

\[
= \left[\frac{1}{2} \theta \sqrt{1 + \theta^2} + \frac{1}{2} \ln(\theta + \sqrt{1 + \theta^2}) \right]_{0}^{2\pi} = \ldots
\]
Length of the Arc on the Graph of \(r = \rho(\theta) \)

Length of \(r = \rho(\theta), \theta \in [\alpha, \beta] \)**

The length of the arc on the graph from \(\alpha \) to \(\theta \) is

\[
s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]

\[\Rightarrow \quad ds(\theta) = \sqrt{\rho(\theta)^2 + \rho'(\theta)^2} \, d\theta\]

Spiral of Archimedes: \(r = \theta, \theta \geq 0 \)

- The length of the arc: \(r = \theta, \theta \in [0, 2\pi] \), is given

\[
\int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{2\pi} \sqrt{1 + \theta^2} \, d\theta
\]

\[
= \left[\frac{1}{2} \theta \sqrt{1 + \theta^2} + \frac{1}{2} \ln(\theta + \sqrt{1 + \theta^2}) \right]_{0}^{2\pi} = \ldots
\]
Length of the Arc on the Graph of \(r = \rho(\theta) \)

Length of \(r = \rho(\theta), \theta \in [\alpha, \beta] \)

The length of the arc on the graph from \(\alpha \) to \(\theta \) is

\[
 s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.
\]

\[
 \Rightarrow \quad ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta
\]

Spiral of Archimedes: \(r = \theta, \theta \geq 0 \)

- The length of the arc: \(r = \theta, \theta \in [0, 2\pi] \), is given

\[
 \int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{2\pi} \sqrt{1 + \theta^2} \, d\theta
\]

\[
 = \left[\frac{1}{2} \theta \sqrt{1 + \theta^2} + \frac{1}{2} \ln(\theta + \sqrt{1 + \theta^2}) \right]_{0}^{2\pi} = \ldots
\]
Length of the Arc on the Graph of $r = \rho(\theta)$

The length of the arc on the graph from α to θ is

$$s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.$$

$$\Rightarrow \quad ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta$$

Spiral of Archimedes: $r = \theta$, $\theta \geq 0$

The length of the arc: $r = \theta$, $\theta \in [0, 2\pi]$, is given

$$\int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{2\pi} \sqrt{1 + \theta^2} \, d\theta$$

$$= \left[\frac{1}{2} \theta \sqrt{1 + \theta^2} + \frac{1}{2} \ln(\theta + \sqrt{1 + \theta^2}) \right]_{0}^{2\pi} = \ldots$$
Length of the Arc on the Graph of $r = \rho(\theta)$

Length of $r = \rho(\theta)$, $\theta \in [\alpha, \beta]$

The length of the arc on the graph from α to θ is

$$s(\theta) = \int_{\alpha}^{\theta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.$$

$$\Rightarrow \quad ds(\theta) = \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta$$

Spiral of Archimedes: $r = \theta$, $\theta \geq 0$

- The length of the arc: $r = \theta$, $\theta \in [0, 2\pi]$, is given by

$$\int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{2\pi} \sqrt{1 + \theta^2} \, d\theta$$

$$= \left[\frac{1}{2} \theta \sqrt{1 + \theta^2} + \frac{1}{2} \ln(\theta + \sqrt{1 + \theta^2}) \right]_{0}^{2\pi} = \cdots$$
Example: Circle of Radius a: $L = 2\pi a$

Circle in Polar Coordinates

$r = a$, $0 \leq \theta \leq 2\pi$

$$L = \int_0^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_0^{2\pi} \sqrt{a^2 + 0} \, d\theta = 2\pi a$$
Example: Circle of Radius a: $L = 2\pi a$

Circle in Polar Coordinates

$$r = a, \quad 0 \leq \theta \leq 2\pi$$

$$L = \int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{2\pi} \sqrt{a^2 + 0} \, d\theta = 2\pi a$$
Example: Circle of Radius a: $L = 2\pi a$

Circle in Polar Coordinates

$r = a, \ 0 \leq \theta \leq 2\pi$

$$L = \int_{0}^{2\pi} \sqrt{\rho(\theta)^2 + \rho'(\theta)^2} \, d\theta = \int_{0}^{2\pi} \sqrt{a^2 + 0} \, d\theta = 2\pi a$$
Example: Circle of Radius a: $L = 2\pi a$

Circle in Polar Coordinates

$$r = a, \quad 0 \leq \theta \leq 2\pi$$

Arc Length

$$L = \int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{2\pi} \sqrt{a^2 + 0} \, d\theta = 2\pi a$$
Example: Circle of Radius a: $L = 2\pi a$

Circle in Polar Coordinates

$$r = 2a \sin \theta, \quad 0 \leq \theta \leq \pi$$

Arc Length Example

$$L = \int_0^\pi \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta$$

$$= \int_0^\pi \sqrt{[2a \sin \theta]^2 + [-2a \cos \theta]^2} \, d\theta = 2a \int_0^\pi \, d\theta = 2\pi a$$
Example: Circle of Radius \(a \): \(L = 2\pi a \)

Circle in Polar Coordinates

\[r = 2a \sin \theta, \quad 0 \leq \theta \leq \pi \]

\[L = \int_{0}^{\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta \]

\[= \int_{0}^{\pi} \sqrt{[2a \sin \theta]^2 + [-2a \cos \theta]^2} \, d\theta = 2a \int_{0}^{\pi} d\theta = 2\pi a \]
Example: Circle of Radius a: $L = 2\pi a$

Circle in Polar Coordinates

$r = 2a\sin \theta, \quad 0 \leq \theta \leq \pi$

$$L = \int_{0}^{\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta$$

$$= \int_{0}^{\pi} \sqrt{[2a\sin \theta]^2 + [-2a\cos \theta]^2} \, d\theta = 2a \int_{0}^{\pi} d\theta = 2\pi a$$
Example: Circle of Radius a: $L = 2\pi a$

Circle in Polar Coordinates

$$r = 2a \sin \theta, \quad 0 \leq \theta \leq \pi$$

Arc Length

$$L = \int_{0}^{\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta$$

$$= \int_{0}^{\pi} \sqrt{[2a \sin \theta]^2 + [-2a \cos \theta]^2} \, d\theta = 2a \int_{0}^{\pi} \, d\theta = 2\pi a$$
Example: Limaçon

Limaçon: \(r = 1 - \cos \theta \)

The length of the cardioid: \(r = 1 - \cos \theta, \theta \in [0, 2\pi] \), is given

\[
\int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = 2 \int_{0}^{\pi} \sqrt{[\sin \theta]^2 + [1 - \cos \theta]^2} \, d\theta
\]

\[
= 2 \int_{0}^{\pi} \sqrt{2(1 - \cos \theta)} \, d\theta
\]

\[
= 2 \int_{0}^{\pi} 2 \sin \frac{1}{2} \theta \, d\theta = 8 \left[-\cos \frac{1}{2} \theta \right]_{0}^{\pi} = 8
\]
Example: Limaçon

Limaçon: $r = 1 - \cos \theta$

The length of the cardioid: $r = 1 - \cos \theta$, $\theta \in [0, 2\pi]$, is given by

$$\int_0^{2\pi} \sqrt{\left[\rho(\theta)\right]^2 + \left[\rho'(\theta)\right]^2} \, d\theta = 2 \int_0^\pi \sqrt{\left[\sin \theta\right]^2 + \left[1 - \cos \theta\right]^2} \, d\theta$$

$$= 2 \int_0^\pi \sqrt{2(1 - \cos \theta)} \, d\theta = 2 \int_0^\pi 2 \sin \frac{1}{2} \theta \, d\theta = 8 \left[- \cos \frac{1}{2} \theta\right]_0^\pi = 8$$
Example: Limaçon

The length of the cardioid: \(r = 1 - \cos \theta, \theta \in [0, 2\pi] \), is given

\[
\int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = 2 \int_{0}^{\pi} \sqrt{\sin^2 \theta + [1 - \cos \theta]^2} \, d\theta
\]

\[
= 2 \int_{0}^{\pi} \sqrt{2(1 - \cos \theta)} \, d\theta = 2 \int_{0}^{\pi} 2 \sin \frac{1}{2} \theta \, d\theta = 8 \left[-\cos \frac{1}{2} \theta \right]_{0}^{\pi} = 8
\]
Example: Limaçon

The length of the cardioid: \(r = 1 - \cos \theta, \, \theta \in [0, 2\pi] \), is given

\[
\int_0^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = 2 \int_0^\pi \sqrt{[\sin \theta]^2 + [1 - \cos \theta]^2} \, d\theta \\
= 2 \int_0^\pi \sqrt{2(1 - \cos \theta)} \, d\theta = 2 \int_0^\pi 2 \sin \frac{1}{2} \theta \, d\theta = 8 \left[-\cos \frac{1}{2} \theta \right]_0^\pi = 8
\]
Example: Limaçon

Limaçon: \(r = 1 - \cos \theta \)

The length of the cardioid: \(r = 1 - \cos \theta, \theta \in [0, 2\pi] \), is given

\[
\int_{0}^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = 2 \int_{0}^{\pi} \sqrt{\sin^2 \theta + [1 - \cos \theta]^2} \, d\theta
\]

\[
= 2 \int_{0}^{\pi} \sqrt{2(1 - \cos \theta)} \, d\theta = 2 \int_{0}^{\pi} 2 \sin \frac{1}{2} \theta \, d\theta = 8 \left[-\cos \frac{1}{2} \theta\right]_{0}^{\pi} = 8
\]
Example: Limaçon

Limaçon: \(r = 1 - \cos \theta \)

The length of the cardioid: \(r = 1 - \cos \theta, \theta \in [0, 2\pi] \), is given

\[
\int_0^{2\pi} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = 2 \int_0^\pi \sqrt{[\sin \theta]^2 + [1 - \cos \theta]^2} \, d\theta
\]

\[
= 2 \int_0^\pi \sqrt{2(1 - \cos \theta)} \, d\theta = 2 \int_0^\pi 2 \sin \frac{1}{2} \theta \, d\theta = 8 \left[-\cos \frac{1}{2} \theta \right]_0^\pi = 8
\]
Example: Logarithmic spiral \(r = ae^{b\theta} \)

A logarithmic spiral, equiangular spiral or growth spiral is a special kind of spiral curve which often appears in nature.

The polar equation of the curve is \(r = ae^{b\theta} \) or \(\theta = b^{-1} \ln(r/a) \).

The spiral has the property that the angle \(\phi \) between the tangent and radial line at the point \((r, \theta)\) is constant and \(\phi = \arctan b^{-1} \).

http://scienceblogs.com
Example: Logarithmic spiral $r = ae^{b\theta}$

A logarithmic spiral, equiangular spiral or growth spiral is a special kind of spiral curve which often appears in nature.

The polar equation of the curve is $r = ae^{b\theta}$ or $\theta = b^{-1}\ln(r/a)$.

The spiral has the property that the angle ϕ between the tangent and radial line at the point (r, θ) is constant and $\phi = \arctan b^{-1}$.

http://scienceblogs.com
A logarithmic spiral, equiangular spiral or growth spiral is a special kind of spiral curve which often appears in nature.

The polar equation of the curve is \(r = ae^{b\theta} \) or \(\theta = b^{-1} \ln(r/a) \).

The spiral has the property that the angle \(\phi \) between the tangent and radial line at the point \((r, \theta)\) is constant and \(\phi = \arctan b^{-1} \).

http://scienceblogs.com
A logarithmic spiral, equiangular spiral or growth spiral is a special kind of spiral curve which often appears in nature.

The polar equation of the curve is \(r = ae^{b\theta} \) or \(\theta = b^{-1} \ln(r/a) \).

The spiral has the property that the angle \(\phi \) between the tangent and radial line at the point \((r, \theta)\) is constant and \(\phi = \arctan b^{-1} \).
Logarithmic Spiral in Motion $r = ae^{-b\theta}$, $\theta \geq 0$

Spiral Motions

- The approach of a hawk to its prey. Their sharpest view is at an angle to their direction of flight.
- The approach of an insect to a light source. They are used to having the light source at a constant angle to their flight path.
- Starting at a point P and moving inward along the spiral with the angle ϕ.

Let a be the straight-line distance from P to the origin. The spiral motion is described by

$$\frac{dr}{d\theta} = -br,$$

$r(0) = a$, with $b = \cot \phi$.
Logarithmic Spiral in Motion $r = ae^{-b\theta}, \theta \geq 0$

Spiral Motions

- The approach of a hawk to its prey. Their sharpest view is at an angle to their direction of flight.
- The approach of an insect to a light source. They are used to having the light source at a constant angle to their flight path.
- Starting at a point P and moving inward along the spiral with the angle ϕ. Let a be the straight-line distance from P to the origin. The spiral motion is described by:

$$\frac{dr}{d\theta} = -br, \quad r(0) = a$$

with $b = \cot \phi$. The polar equation of the path is:

$$r = ae^{-b\theta}, \theta \geq 0$$
Spiral Motions

- The approach of a hawk to its prey. Their sharpest view is at an angle to their direction of flight.

- The approach of an insect to a light source. They are used to having the light source at a constant angle to their flight path.

- Starting at a point P and moving inward along the spiral with the angle ϕ. Let a be the straight-line distance from P to the origin. The spiral motion is described by

$$\frac{dr}{d\theta} = -b r, \quad r(0) = a, \quad \text{with } b = \cot \phi.$$

The polar equation of the path is

$$r = ae^{-b\theta}, \quad \theta \geq 0.$$
Logarithmic Spiral in Motion \(r = ae^{-b\theta}, \theta \geq 0 \)

Spiral Motions

- The approach of a hawk to its prey. Their sharpest view is at an angle to their direction of flight.
- The approach of an insect to a light source. They are used to having the light source at a constant angle to their flight path.
- Starting at a point \(P \) and moving inward along the spiral with the angle \(\phi \).

Let \(a \) be the straight-line distance from \(P \) to the origin. The spiral motion is described by

\[
\frac{dr}{d\theta} = -br, \quad r(0) = a, \quad \text{with } b = \cot \phi.
\]

The polar equation of the path is

\[
r = ae^{-b\theta}, \quad \theta \geq 0
\]
Logarithmic Spiral in Motion $r = ae^{-b\theta}$, $\theta \geq 0$

Spiral Motions

- The approach of a hawk to its prey. Their sharpest view is at an angle to their direction of flight.
- The approach of an insect to a light source. They are used to having the light source at a constant angle to their flight path.
- Starting at a point P and moving inward along the spiral with the angle ϕ. Let a be the straight-line distance from P to the origin. The spiral motion is described by

$$\frac{dr}{d\theta} = -br, \quad r(0) = a,$$

with $b = \cot \phi$.

The polar equation of the path is

$$r = ae^{-b\theta}, \quad \theta \geq 0$$
Spiral Motions

- The approach of a hawk to its prey. Their sharpest view is at an angle to their direction of flight.

- The approach of an insect to a light source. They are used to having the light source at a constant angle to their flight path.

- Starting at a point P and moving inward along the spiral with the angle ϕ. Let a be the straight-line distance from P to the origin. The spiral motion is described by

\[
\frac{dr}{d\theta} = -b r, \quad r(0) = a, \quad \text{with } b = \cot \phi.
\]

The polar equation of the path is

\[
r = ae^{-b\theta}, \quad \theta \geq 0
\]
Logarithmic Spiral in Motion \(r = ae^{-b\theta}, \theta \geq 0 \)

Length of the Logarithmic Spiral: \(r = ae^{-b\theta}, \theta \geq 0 \)

- The length of the logarithmic spiral: \(r = e^{-\theta}, \theta \geq 0 \), is given by
 \[
 L(C) = \int_{0}^{\infty} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{\infty} \sqrt{[e^{-\theta}]^2 + [e^{-\theta}]^2} \, d\theta = \int_{0}^{\infty} \sqrt{2} \, e^{-\theta} \, d\theta = \sqrt{2} \left[-e^{-\theta} \right]_{0}^{\infty} = \sqrt{2} \cdot \pi.
 \]

- The spiral motion \(r = ae^{-b\theta}, \theta \geq 0 \) circles the origin an unbounded number of times without reaching it; yet, the total distance covered on this path is finite:
 \[
 L(C) = \int_{0}^{\infty} ds = a / \cos(\phi), \quad \text{with } \phi = \cot^{-1} b.
 \]
Length of the Logarithmic Spiral: \(r = ae^{-b\theta}, \ \theta \geq 0 \)

- The length of the logarithmic spiral: \(r = e^{-\theta}, \ \theta \geq 0 \), is given by:

\[
L(C) = \int_{0}^{\infty} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{\infty} \sqrt{[e^{-\theta}]^2 + [e^{-\theta}]^2} \, d\theta \\
= \sqrt{2} \int_{0}^{\infty} e^{-\theta} \, d\theta = \sqrt{2} \left[-e^{-\theta} \right]_0^{\infty} = \sqrt{2}
\]

- The spiral motion \(r = ae^{-b\theta}, \ \theta \geq 0 \) circles the origin an unbounded number of times without reaching it; yet, the total distance covered on this path is finite:

\[
L(C) = \int_{0}^{\infty} ds = a/\cos(\phi), \quad \text{with} \quad \phi = \cot^{-1} b.
\]
Length of the Logarithmic Spiral: \(r = ae^{-b\theta}, \theta \geq 0 \)

- The length of the logarithmic spiral: \(r = e^{-\theta}, \theta \geq 0 \), is given

\[
L(C) = \int_0^\infty \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_0^\infty \sqrt{[e^{-\theta}]^2 + [e^{-\theta}]^2} \, d\theta
\]

\[
= \sqrt{2} \int_0^\infty e^{-\theta} \, d\theta = \sqrt{2} \left[-e^{-\theta} \right]_0^\pi = \sqrt{2}
\]

- The spiral motion \(r = ae^{-b\theta}, \theta \geq 0 \) circles the origin an unbounded number of times without reaching it; yet, the total distance covered on this path is finite:

\[
L(C) = \int_0^\infty ds = a/\cos(\phi), \text{ with } \phi = \cot^{-1} b.
\]
Length of the Logarithmic Spiral: $r = ae^{-b\theta}$, $\theta \geq 0$

The length of the logarithmic spiral: $r = e^{-\theta}$, $\theta \geq 0$, is given

$$L(C) = \int_0^\infty \sqrt{\left[\rho(\theta)\right]^2 + [\rho'(\theta)]^2} \, d\theta = \int_0^\infty \sqrt{[e^{-\theta}]^2 + [e^{-\theta}]^2} \, d\theta$$

$$= \sqrt{2} \int_0^\infty e^{-\theta} \, d\theta = \sqrt{2} \left[-e^{-\theta}\right]_0^\pi = \sqrt{2}$$

The spiral motion $r = ae^{-b\theta}$, $\theta \geq 0$ circles the origin an unbounded number of times without reaching it; yet, the total distance covered on this path is finite:

$$L(C) = \int_0^\infty ds = a / \cos(\phi), \quad \text{with} \quad \phi = \cot^{-1} b.$$
Length of the Logarithmic Spiral: $r = ae^{-b\theta}$, $\theta \geq 0$

The length of the logarithmic spiral: $r = e^{-\theta}$, $\theta \geq 0$, is given

$$L(C) = \int_{0}^{\infty} \sqrt{\left[\rho(\theta)\right]^2 + \left[\rho'(\theta)\right]^2} \, d\theta = \int_{0}^{\infty} \sqrt{\left[e^{-\theta}\right]^2 + \left[e^{-\theta}\right]^2} \, d\theta$$

$$= \sqrt{2} \int_{0}^{\infty} e^{-\theta} \, d\theta = \sqrt{2} \left[-e^{-\theta}\right]_{0}^{\pi} = \sqrt{2}$$

The spiral motion $r = ae^{-b\theta}$, $\theta \geq 0$ circles the origin an unbounded number of times without reaching it; yet, the total distance covered on this path is finite:

$$L(C) = \int_{0}^{\infty} ds = \frac{a}{\cos(\phi)}$$

with $\phi = \cot^{-1} b$.
Length of the Logarithmic Spiral: $r = ae^{-b\theta}, \theta \geq 0$

- The length of the logarithmic spiral: $r = e^{-\theta}, \theta \geq 0$, is given

$$L(C) = \int_{0}^{\infty} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_{0}^{\infty} \sqrt{[e^{-\theta}]^2 + [e^{-\theta}]^2} \, d\theta$$

$$= \sqrt{2} \int_{0}^{\infty} e^{-\theta} \, d\theta = \sqrt{2}[-e^{-\theta}]_0^\infty = \sqrt{2}$$

- The spiral motion $r = ae^{-b\theta}, \theta \geq 0$ circles the origin an unbounded number of times without reaching it; yet, the total distance covered on this path is finite:

$$L(C) = \int_{0}^{\infty} ds = a/\cos(\phi), \quad \text{with } \phi = \cot^{-1} b.$$
Length of the Logarithmic Spiral: \(r = ae^{-b\theta}, \ \theta \geq 0 \)

- The length of the logarithmic spiral: \(r = e^{-\theta}, \ \theta \geq 0 \), is given

\[
L(C) = \int_0^\infty \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} \, d\theta = \int_0^\infty \sqrt{[e^{-\theta}]^2 + [e^{-\theta}]^2} \, d\theta
\]

\[
= \sqrt{2} \int_0^\infty e^{-\theta} \, d\theta = \sqrt{2}[e^{-\theta}]_0^\pi = \sqrt{2}
\]

- The spiral motion \(r = ae^{-b\theta}, \ \theta \geq 0 \) circles the origin an unbounded number of times without reaching it; yet, the total distance covered on this path is finite:

\[
L(C) = \int_0^\infty ds = a/ \cos(\phi), \quad \text{with} \ \phi = \cot^{-1} b.
\]
Four Bugs Chasing One Another

- Four bugs are at the corners of a square.
- They start to crawl clockwise at a constant rate, each moving toward its neighbor.
- At any instant, they mark the corners of a square. As the bugs get closer to the original square’s center, the new square they define rotates and diminishes in size.

\[\frac{d}{d\theta} \theta = -r, \quad r(0) = \frac{1}{\sqrt{2}}. \]

The polar equation of the path is:

\[r = \frac{1}{\sqrt{2}} e^{-\theta}, \quad \theta \geq 0. \]

The total distance covered on its path is:

\[L(C) = 1. \]
Four Bugs Chasing One Another

- Four bugs are at the corners of a square.
- They start to crawl clockwise at a constant rate, each moving toward its neighbor.
- At any instant, they mark the corners of a square. As the bugs get closer to the original square’s center, the new square they define rotates and diminishes in size.

Each bug starts at a corner of the original (unit) square that is $\frac{1}{\sqrt{2}}$ away from the origin (i.e., center) and moves inward along the spiral with the angle $\phi = \frac{\pi}{4}$.

The spiral motion is described by $dr/d\theta = -r$, $r(0) = 1/\sqrt{2}$.

The polar equation of the path is $r = \frac{1}{\sqrt{2}} e^{-\theta}$, $\theta \geq 0$.

The total distance covered on its path is $L(C) = 1$.

Jiwen He, University of Houston
Four Bugs Chasing One Another

- Four bugs are at the corners of a square.
- They start to crawl clockwise at a constant rate, each moving toward its neighbor.
- At any instant, they mark the corners of a square. As the bugs get closer to the original square’s center, the new square they define rotates and diminishes in size.

Each bug starts at a corner of the original (unit) square that is $1/\sqrt{2}$ away from the origin (i.e., center) and moves inward along the spiral with the angle $\phi = \pi/4$. The spiral motion is described by $\frac{dr}{d\theta} = -r$, $r(0) = 1/\sqrt{2}$. The polar equation of the path is $r = 1/\sqrt{2}e^{-\theta}$, $\theta \geq 0$.

The total distance covered on its path is $L(C) = 1$.

Jiwen He, University of Houston
Math 1432 – Section 26626, Lecture 16
March 6, 2008 10 / 11
Four Bugs Chasing One Another

- Four bugs are at the corners of a square.
- They start to crawl clockwise at a constant rate, each moving toward its neighbor.
- At any instant, they mark the corners of a square. As the bugs get closer to the original square’s center, the new square they define rotates and diminishes in size.

Each bug starts at a corner of the original (unit) square that is $1/\sqrt{2}$ away from the origin (i.e., center) and moves inward along the spiral with the angle $\phi = \pi/4$. The spiral motion is described by $\frac{dr}{d\theta} = -r$, $r(0) = 1/\sqrt{2}$. The polar equation of the path is $r = 1/\sqrt{2}e^{-\theta}$, $\theta \geq 0$. The total distance covered on its path is $L(C) = 1$.

Jiwen He, University of Houston
Four Bugs Chasing One Another

Four bugs are at the corners of a square.

They start to crawl clockwise at a constant rate, each moving toward its neighbor.

At any instant, they mark the corners of a square. As the bugs get closer to the original square’s center, the new square they define rotates and diminishes in size.

Each bug starts at a corner of the original (unit) square that is $1/\sqrt{2}$ away from the origin (i.e., center) and moves inward along the spiral with the angle $\phi = \frac{\pi}{4}$. The spiral motion is described by $\frac{dr}{d\theta} = -r$, $r(0) = 1/\sqrt{2}$. The polar equation of the path is $r = 1/\sqrt{2}e^{-\theta}$, $\theta \geq 0$. The total distance covered on its path is $L(C) = 1$.
Four Bugs Chasing One Another

- Four bugs are at the corners of a square.
- They start to crawl clockwise at a constant rate, each moving toward its neighbor.
- At any instant, they mark the corners of a square. As the bugs get closer to the original square’s center, the new square they define rotates and diminishes in size.

Each bug starts at a corner of the original (unit) square that is $1/\sqrt{2}$ away from the origin (i.e., center) and moves inward along the spiral with the angle $\phi = \frac{\pi}{4}$. The spiral motion is described by $\frac{dr}{d\theta} = -r$, $r(0) = 1/\sqrt{2}$. The polar equation of the path is $r = 1/\sqrt{2}e^{-\theta}$, $\theta \geq 0$. The total distance covered on its path is $L(C) = 1$.
Four Bugs Chasing One Another

- Four bugs are at the corners of a square.
- They start to crawl clockwise at a constant rate, each moving toward its neighbor.
- At any instant, they mark the corners of a square. As the bugs get closer to the original square’s center, the new square they define rotates and diminishes in size.

Each bug starts at a corner of the original (unit) square that is $1/\sqrt{2}$ away from the origin (i.e., center) and moves inward along the spiral with the angle $\phi = \frac{\pi}{4}$. The spiral motion is described by $\frac{dr}{d\theta} = -r$, $r(0) = 1/\sqrt{2}$. The polar equation of the path is $r = 1/\sqrt{2}e^{-\theta}$, $\theta \geq 0$. The total distance covered on its path is $L(C) = 1$.
Four Bugs Chasing One Another

- Four bugs are at the corners of a square.
- They start to crawl clockwise at a constant rate, each moving toward its neighbor.
- At any instant, they mark the corners of a square. As the bugs get closer to the original square’s center, the new square they define rotates and diminishes in size.

Each bug starts at a corner of the original (unit) square that is $1/\sqrt{2}$ away from the origin (i.e., center) and moves inward along the spiral with the angle $\phi = \frac{\pi}{4}$. The spiral motion is described by $\frac{dr}{d\theta} = -r$, $r(0) = 1/\sqrt{2}$. The polar equation of the path is $r = 1/\sqrt{2}e^{-\theta}$, $\theta \geq 0$. The total distance covered on its path is $L(C) = 1$.

Jiwen He, University of Houston
Math 1432 – Section 26626, Lecture 16
March 6, 2008 10 / 11
Outline

- Arc Length
 - Arc Length
 - Examples