Lecture 25
Section 11.5 Taylor Polynomials in x; Taylor Series in x

Jiwen He
Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
http://math.uh.edu/~jiwenhe/Math1432
The nth Taylor polynomial at 0 for a function f is

\[P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \]

P_n is the polynomial that has the same value as f at 0 and the same first n derivatives:

\[P_n(0) = f(0), P'_n(0) = f'(0), P''_n(0) = f''(0), \cdots, P^{(n)}_n(0) = f^{(n)}(0). \]

Best Approximation

P_n provides the best local approximation of $f(x)$ near 0 by a polynomial of degree $\leq n$.

\[P_0(x) = f(0), \]
\[P_1(x) = f(0) + f'(0)x, \]
\[P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2. \]
The \textit{\textbf{\textit{\(n\)th Taylor polynomial}} at 0} for a function \(f\) is

\[
P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;
\]

\(P_n\) is the polynomial that has the same value as \(f\) at 0 and the same first \(n\) derivatives:

\[
P_n(0) = f(0), \quad P'_n(0) = f'(0), \quad P''_n(0) = f''(0), \quad \ldots, \quad P^{(n)}_n(0) = f^{(n)}(0).
\]

\textbf{Best Approximation}

\(P_n\) provides the best local approximation of \(f(x)\) near 0 by a polynomial of degree \(\leq n\).

\[
P_0(x) = f(0),
\]

\[
P_1(x) = f(0) + f'(0)x,
\]

\[
P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.
\]
The nth Taylor polynomial at 0 for a function f is

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

P_n is the polynomial that has the same value as f at 0 and the same first n derivatives:

$$P_n(0) = f(0), \quad P_n'(0) = f'(0), \quad P_n''(0) = f''(0), \quad \cdots, \quad P_n^{(n)}(0) = f^{(n)}(0).$$

Best Approximation

P_n provides the best local approximation of $f(x)$ near 0 by a polynomial of degree $\leq n$.

$$P_0(x) = f(0),$$

$$P_1(x) = f(0) + f'(0)x,$$

$$P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.$$

Jiwen He, University of Houston
The \textit{nth Taylor polynomial} at 0 for a function f is

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

P_n is the polynomial that has the \textit{same value} as f at 0 and the same first n derivatives:

$P_n(0) = f(0), \ P_n'(0) = f'(0), \ P_n''(0) = f''(0), \ldots, \ P_n^{(n)}(0) = f^{(n)}(0)$.

Best Approximation

P_n provides the best local approximation of $f(x)$ near 0 by a polynomial of degree $\leq n$.

$P_0(x) = f(0)$,
$P_1(x) = f(0) + f'(0)x$,
$P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2$.
The \textit{n}th Taylor polynomial at 0 for a function \(f\) is

\[P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \]

\(P_n\) is the polynomial that has the same value as \(f\) at 0 and the same first \(n\) derivatives:

\[P_n(0) = f(0), \quad P_n'(0) = f'(0), \quad P_n''(0) = f''(0), \quad \cdots, \quad P_n^{(n)}(0) = f^{(n)}(0). \]

\textbf{Best Approximation}

\(P_n\) provides the best local approximation of \(f(x)\) near 0 by a polynomial of degree \(\leq n\).

\[P_0(x) = f(0), \]
\[P_1(x) = f(0) + f'(0)x, \]
\[P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2. \]
Taylor Polynomials

The \(n \text{th Taylor polynomial} \) at 0 for a function \(f \) is

\[
P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;
\]

\(P_n \) is the polynomial that has the same value as \(f \) at 0 and the same first \(n \) derivatives:

\[
P_n(0) = f(0), \quad P'_n(0) = f'(0), \quad P''_n(0) = f''(0), \quad \cdots, \quad P^{(n)}_n(0) = f^{(n)}(0).
\]

Best Approximation

\(P_n \) provides the best local approximation of \(f(x) \) near 0 by a polynomial of degree \(\leq n \).

\[
\begin{align*}
P_0(x) &= f(0), \\
P_1(x) &= f(0) + f'(0)x, \\
P_2(x) &= f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.
\end{align*}
\]
The nth Taylor polynomial at 0 for a function f is

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

P_n is the polynomial that has the same value as f at 0 and the same first n derivatives:

$$P_n(0) = f(0), \quad P'_n(0) = f'(0), \quad P''_n(0) = f''(0), \quad \cdots, \quad P^{(n)}_n(0) = f^{(n)}(0).$$

Best Approximation

P_n provides the best local approximation of $f(x)$ near 0 by a polynomial of degree $\leq n$.

$$P_0(x) = f(0),$$

$$P_1(x) = f(0) + f'(0)x,$$

$$P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.$$
Taylor Polynomials

The \(n \)th Taylor polynomial at 0 for a function \(f \) is

\[
P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;
\]

\(P_n \) is the polynomial that has the same value as \(f \) at 0 and the same first \(n \) derivatives:

\[
P_n(0) = f(0), \quad P'_n(0) = f'(0), \quad P''_n(0) = f''(0), \quad \cdots, \quad P^{(n)}_n(0) = f^{(n)}(0).
\]

Best Approximation

\(P_n \) provides the best local approximation of \(f(x) \) near 0 by a polynomial of degree \(\leq n \).

\[
P_0(x) = f(0),
\]
\[
P_1(x) = f(0) + f'(0)x,
\]
\[
P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.
\]
The nth Taylor polynomial at 0 for a function f is

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

P_n is the polynomial that has the same value as f at 0 and the same first n derivatives:

$$P_n(0) = f(0), \ P_n'(0) = f'(0), \ P_n''(0) = f''(0), \ \cdots, \ P_n^{(n)}(0) = f^{(n)}(0).$$

Best Approximation

P_n provides the best local approximation of $f(x)$ near 0 by a polynomial of degree $\leq n$.

$$P_0(x) = f(0),$$

$$P_1(x) = f(0) + f'(0)x,$$

$$P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.$$
Taylor Polynomials

The nth Taylor polynomial at 0 for a function f is

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

P_n is the polynomial that has the same value as f at 0 and the same first n derivatives:

$$P_n(0) = f(0), \quad P'_n(0) = f'(0), \quad P''_n(0) = f''(0), \quad \cdots, \quad P^{(n)}_n(0) = f^{(n)}(0).$$

Best Approximation

P_n provides the best local approximation of $f(x)$ near 0 by a polynomial of degree $\leq n$.

$$P_0(x) = f(0),$$

$$P_1(x) = f(0) + f'(0)x,$$

$$P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.$$
Taylor Polynomials

The \(n\)th Taylor polynomial at 0 for a function \(f\) is

\[
P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;
\]

\(P_n\) is the polynomial that has the same value as \(f\) at 0 and the same first \(n\) derivatives:

\[
P_n(0) = f(0), \ P'_n(0) = f'(0), \ P''_n(0) = f''(0), \ldots, \ P^{(n)}_n(0) = f^{(n)}(0).
\]

Best Approximation

\(P_n\) provides the best local approximation of \(f(x)\) near 0 by a polynomial of degree \(\leq n\).

\[
P_0(x) = f(0),
\]

\[
P_1(x) = f(0) + f'(0)x,
\]

\[
P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.
\]
Taylor Polynomials

The nth Taylor polynomial at 0 for a function f is

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

P_n is the polynomial that has the same value as f at 0 and the same first n derivatives:

$P_n(0) = f(0), P'_n(0) = f'(0), P''_n(0) = f''(0), \ldots, P^{(n)}_n(0) = f^{(n)}(0)$.

Best Approximation

P_n provides the best local approximation of $f(x)$ near 0 by a polynomial of degree $\leq n$.

$$P_0(x) = f(0),$$
$$P_1(x) = f(0) + f'(0)x,$$
$$P_2(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;$$

$$f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x; \quad f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

\[P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \]

\[f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x; \]

\[f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1. \]

Taylor Polynomials of $f(x) = e^x$

\[P_0(x) = 1, \]
\[P_1(x) = 1 + x, \]
\[P_2(x) = 1 + x + \frac{x^2}{2!}, \]
\[P_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}, \]
\[\vdots \]
\[P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}. \]
Taylor Polynomials of the Exponential $f(x) = e^x$

$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n$;

$f(x) = e^x$, $f'(x) = e^x$, $f''(x) = e^x$, \cdots, $f^{(n)}(x) = e^x$;
$f(0) = 1$, $f'(0) = 1$, $f''(0) = 1$, \cdots, $f^{(n)}(0) = 1$.

Taylor Polynomials of $f(x) = e^x$

$P_0(x) = 1,$
$P_1(x) = 1 + x,$
$P_2(x) = 1 + x + \frac{x^2}{2!},$
$P_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!},$
\cdots
$P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}.$
Taylor Polynomials of the Exponential \(f(x) = e^x \)

\[
P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;
\]

\[
f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x; \\
f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.
\]
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;$$

$$f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;$$

$$f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$

Taylor Polynomials of $f(x) = e^x$

$$P_0(x) = 1,$$

$$P_1(x) = 1 + x,$$

$$P_2(x) = 1 + x + \frac{x^2}{2!},$$

$$P_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!},$$

$$\vdots$$

$$P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

\[P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \]

\[f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x; \]

\[f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1. \]

Taylor Polynomials of $f(x) = e^x$

\[P_0(x) = 1, \]
\[P_1(x) = 1 + x, \]
\[P_2(x) = 1 + x + \frac{x^2}{2!}, \]
\[P_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}, \]
\[\vdots \]
\[P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}. \]
Taylor Polynomials of the Exponential $f(x) = e^x$

\[P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \]

\[f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x; \]

\[f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1. \]
Taylor Polynomials of the Exponential $f(x) = e^x$

Taylor Polynomials

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;$$

$$f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;$$

$$f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;$$

$$f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;$$

$$f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;$$

$$f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$
Taylor Polynomials of the Exponential \(f(x) = e^x \)

\[
P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;
\]

\[
f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;
\]

\[
f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.
\]
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = e^x, \quad f'(x) = e^x, \quad f''(x) = e^x, \quad \cdots, \quad f^{(n)}(x) = e^x;$$

$$f(0) = 1, \quad f'(0) = 1, \quad f''(0) = 1, \quad \cdots, \quad f^{(n)}(0) = 1.$$
Taylor Polynomials of the Sine $f(x) = \sin x$

$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n$;

$f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, \ldots

$f(0) = 0$, $f'(0) = 1$, $f''(0) = 0$, $f'''(0) = -1$, $f^{(4)}(0) = 0$, \ldots

Taylor Polynomials of $f(x) = \sin x$

$P_0(x) = 0$,

$P_1(x) = P_2(x) = x$,

$P_3(x) = P_4(x) = x - \frac{x^3}{3!}$,

$P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$,

$P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$.
Taylor Polynomials of the Sine $f(x) = \sin x$

\[P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \]

$f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, \ldots;

$f(0) = 0$, $f'(0) = 1$, $f''(0) = 0$, $f'''(0) = -1$, $f^{(4)}(0) = 0$, \ldots;

Taylor Polynomials of $f(x) = \sin x$

\begin{align*}
P_0(x) &= 0, \\
P_1(x) &= P_2(x) = x, \\
P_3(x) &= P_4(x) = x - \frac{x^3}{3!}, \\
P_5(x) &= P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}, \\
P_7(x) &= P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}.
\end{align*}
Taylor Polynomials of the Sine $f(x) = \sin x$

\[
P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;
\]

\[
f(x) = \sin x, \quad f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f'''(x) = -\cos x, \cdots
\]

\[
f(0) = 0, \quad f'(0) = 1, \quad f''(0) = 0, \quad f'''(0) = -1, \quad f^{(4)}(0) = 0, \cdots
\]
Taylor Polynomials of the Sine $f(x) = \sin x$

\[
P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;
\]

$f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x, \cdots$

$f(0) = 0$, $f'(0) = 1$, $f''(0) = 0$, $f'''(0) = -1$, $f^{(4)}(0) = 0, \cdots$
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = \sin x, \quad f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f'''(x) = -\cos x, \ldots;$$

$$f(0) = 0, \quad f'(0) = 1, \quad f''(0) = 0, \quad f'''(0) = -1, \quad f^{(4)}(0) = 0, \ldots;$$

Taylor Polynomials of $f(x) = \sin x$

$$P_0(x) = 0,$$

$$P_1(x) = P_2(x) = x,$$

$$P_3(x) = P_4(x) = x - \frac{x^3}{3!},$$

$$P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!},$$

$$P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!},$$

Jiwen He, University of Houston
Taylor Polynomials of the Sine $f(x) = \sin x$

\[P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \]

\[f(x) = \sin x, \quad f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f'''(x) = -\cos x, \quad \cdots; \]

\[f(0) = 0, \quad f'(0) = 1, \quad f''(0) = 0, \quad f'''(0) = -1, \quad f^{(4)}(0) = 0, \quad \cdots; \]
Taylor Polynomials of the Sine $f(x) = \sin x$

Taylor Polynomials:

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = \sin x, \quad f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f'''(x) = -\cos x, \cdots;$$

$$f(0) = 0, \quad f'(0) = 1, \quad f''(0) = 0, \quad f'''(0) = -1, \quad f^{(4)}(0) = 0, \cdots;$$
Taylor Polynomials of the Sine $f(x) = \sin x$

\[P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \]

$f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, \ldots ;

$f(0) = 0$, $f'(0) = 1$, $f''(0) = 0$, $f'''(0) = -1$, $f^{(4)}(0) = 0$, \ldots ;

Taylor Polynomials of $f(x) = \sin x$

\[P_0(x) = 0, \]

\[P_1(x) = P_2(x) = x, \]

\[P_3(x) = P_4(x) = x - \frac{x^3}{3!}, \]

\[P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}, \]

\[P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}. \]
Taylor Polynomials of the Sine $f(x) = \sin x$

\[P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \]

$f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, \cdots;

$f(0) = 0$, $f'(0) = 1$, $f''(0) = 0$, $f'''(0) = -1$, $f^{(4)}(0) = 0$, \cdots;

Taylor Polynomials of $f(x) = \sin x$

\[P_0(x) = 0, \]
\[P_1(x) = P_2(x) = x, \]
\[P_3(x) = P_4(x) = x - \frac{x^3}{3!}, \]
\[P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}, \]
\[P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}. \]
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = \sin x, \quad f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f'''(x) = -\cos x, \cdots;$$

$$f(0) = 0, \quad f'(0) = 1, \quad f''(0) = 0, \quad f'''(0) = -1, \quad f^{(4)}(0) = 0, \cdots;$$

Taylor Polynomials of $f(x) = \sin x$

$$P_0(x) = 0,$$

$$P_1(x) = P_2(x) = x,$$

$$P_3(x) = P_4(x) = x - \frac{x^3}{3!},$$

$$P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!},$$

$$P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}.$$
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, · · · ; $f(0) = 0$, $f'(0) = 1$, $f''(0) = 0$, $f'''(0) = -1$, $f^{(4)}(0) = 0$, · · · ;

Taylor Polynomials of $f(x) = \sin x$

$P_0(x) = 0,$

$P_1(x) = P_2(x) = x,$

$P_3(x) = P_4(x) = x - \frac{x^3}{3!},$

$P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!},$

$P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}.$
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$f(x) = \sin x$, $f'(x) = \cos x$, $f''(x) = -\sin x$, $f'''(x) = -\cos x$, $f^{(4)}(x) = 0$;

$f(0) = 0$, $f'(0) = 1$, $f''(0) = 0$, $f'''(0) = -1$, $f^{(4)}(0) = 0$;

Taylor Polynomials of $f(x) = \sin x$

$P_0(x) = 0,$

$P_1(x) = P_2(x) = x,$

$P_3(x) = P_4(x) = x - \frac{x^3}{3!},$

$P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!},$

$P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!},$
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = \sin x, \; f'(x) = \cos x, \; f''(x) = -\sin x, \; f'''(x) = -\cos x, \cdots;$$
$$f(0) = 0, \; f'(0) = 1, \; f''(0) = 0, \; f'''(0) = -1, \; f^{(4)}(0) = 0, \cdots;$$

Taylor Polynomials of $f(x) = \sin x$

$$P_0(x) = 0,$$
$$P_1(x) = P_2(x) = x,$$
$$P_3(x) = P_4(x) = x - \frac{x^3}{3!},$$
$$P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!},$$
$$P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!},$$

Jiwen He, University of Houston
Math 1432 – Section 26626, Lecture 25
April 15, 2008 4 / 13
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;$$

$$f(x) = \sin x, \quad f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f'''(x) = -\cos x, \cdots;$$

$$f(0) = 0, \quad f'(0) = 1, \quad f''(0) = 0, \quad f'''(0) = -1, \quad f^{(4)}(0) = 0, \cdots;$$

Taylor Polynomials of $f(x) = \sin x$

$$P_0(x) = 0,$$

$$P_1(x) = P_2(x) = x,$$

$$P_3(x) = P_4(x) = x - \frac{x^3}{3!},$$

$$P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!},$$

$$P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!},$$

Jiwen He, University of Houston
Taylor Polynomials of the Sine \(f(x) = \sin x \)

\[
P_n(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \cdots + \frac{f^{(n)}(0)}{n!}x^n;
\]

\(f(x) = \sin x, \quad f'(x) = \cos x, \quad f''(x) = -\sin x, \quad f'''(x) = -\cos x, \cdots \)

\(f(0) = 0, \quad f'(0) = 1, \quad f''(0) = 0, \quad f'''(0) = -1, \quad f^{(4)}(0) = 0, \cdots \)

Taylor Polynomials of \(f(x) = \sin x \)

\[
P_0(x) = 0,
\]

\[
P_1(x) = P_2(x) = x,
\]

\[
P_3(x) = P_4(x) = x - \frac{x^3}{3!},
\]

\[
P_5(x) = P_6(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!},
\]

\[
P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!},
\]
Define the nth remainder by $R_n(x) = f(x) - P_n(x)$; that is $f(x) = P_n(x) + R_n(x)$. Then
\[\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0 \]

Taylor’s Theorem

If f has $n + 1$ continuous derivatives on an open interval I that contains 0, then for each $x \in I$,
\[R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt. \]

Lagrange Formula for the Remainder

For some number c between 0 and x,
\[R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}. \]
Remainder Term

Define the \(n \)th remainder by \(R_n(x) = f(x) - P_n(x) \); that is \(f(x) = P_n(x) + R_n(x) \). Then

\[
\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0
\]

Taylor’s Theorem

If \(f \) has \(n + 1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I \),

\[
R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x-t)^n \, dt.
\]

Lagrange Formula for the Remainder

For some number \(c \) between 0 and \(x \),

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}.
\]
Remainder Term

Define the \textit{\textit{n}th remainder} by \(R_n(x) = f(x) - P_n(x) \); that is \(f(x) = P_n(x) + R_n(x) \). Then

\[
\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0
\]

Taylor’s Theorem

If \(f \) has \(n+1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I \),

\[
R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]

Lagrange Formula for the Remainder

For some number \(c \) between 0 and \(x \),

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}.
\]
Remainder Term

Define the \(n \)th remainder by
\[R_n(x) = f(x) - P_n(x); \]
that is, \(f(x) = P_n(x) + R_n(x) \). Then
\[\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0. \]

Taylor’s Theorem

If \(f \) has \(n + 1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I \),
\[R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt. \]

Lagrange Formula for the Remainder

For some number \(c \) between 0 and \(x \),
\[R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!} x^{n+1}. \]
Remainder Term

Define the *n*th remainder by \(R_n(x) = f(x) - P_n(x) \); that is \(f(x) = P_n(x) + R_n(x) \). Then

\[
\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0
\]

Taylor’s Theorem

If \(f \) has \(n + 1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I \),

\[
R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]

Lagrange Formula for the Remainder

For some number \(c \) between 0 and \(x \),

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!} x^{n+1}
\]
Remainder Term

Remainder Term

Define the \(n \)th remainder by \(R_n(x) = f(x) - P_n(x) \); that is \(f(x) = P_n(x) + R_n(x) \). Then

\[
\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0
\]

Taylor’s Theorem

If \(f \) has \(n + 1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I \),

\[
R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]

Lagrange Formula for the Remainder

For some number \(c \) between 0 and \(x \),

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!} x^{n+1}.
\]
Remainder Term

Remainder Term
Define the \(n \)th remainder by \(R_n(x) = f(x) - P_n(x) \); that is \(f(x) = P_n(x) + R_n(x) \). Then
\[
\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0
\]

Taylor’s Theorem
If \(f \) has \(n + 1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I \),
\[
R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]

Lagrange Formula for the Remainder
For some number \(c \) between 0 and \(x \),
\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}.
\]
Define the \(n \)th remainder by \(R_n(x) = f(x) - P_n(x) \); that is \(f(x) = P_n(x) + R_n(x) \). Then
\[
\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0
\]

If \(f \) has \(n + 1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I \),
\[
R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]

For some number \(c \) between 0 and \(x \),
\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!} x^{n+1}.
\]
Remainder Term

Define the \(n \)th remainder by \(R_n(x) = f(x) - P_n(x) \);
that is \(f(x) = P_n(x) + R_n(x) \). Then

\[
\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0
\]

Taylor’s Theorem

If \(f \) has \(n + 1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I \),

\[
R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]

Lagrange Formula for the Remainder

For some number \(c \) between 0 and \(x \),

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!} x^{n+1}.
\]
Remainder Term

Define the \(n \text{th remainder} \) by \(R_n(x) = f(x) - P_n(x); \)
that is \(f(x) = P_n(x) + R_n(x). \) Then
\[
\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0
\]

Taylor’s Theorem

If \(f \) has \(n + 1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I, \)
\[
R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]

Lagrange Formula for the Remainder

For some number \(c \) between 0 and \(x, \)
\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!} x^{n+1}.
\]
Define the *n*th remainder by \(R_n(x) = f(x) - P_n(x) \); that is \(f(x) = P_n(x) + R_n(x) \). Then

\[
\lim_{n \to \infty} P_n(x) = f(x) \quad \text{if and only if} \quad \lim_{n \to \infty} R_n(x) = 0
\]

Taylor’s Theorem

If \(f \) has \(n + 1 \) continuous derivatives on an open interval \(I \) that contains 0, then for each \(x \in I \),

\[
R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]

Lagrange Formula for the Remainder

For some number \(c \) between 0 and \(x \),

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!} x^{n+1}.
\]
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}. $$

Taylor Polynomials of the Exponential $f(x) = e^x$

$$f(x) = e^x, \quad P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}. $$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

Proof.

Let J be the interval that joins 0 to x and let $M = \max_{t \in J} e^t$.

Note that $f^{(n+1)}(t) = e^t$ for all n, then $\max_{t \in J} |f^{(n+1)}(t)| = M$.

$$|R_n(x)| \leq M \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n$; \hspace{1cm} R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!}x^{n+1}.$

Taylor Polynomials of the Exponential $f(x) = e^x$

\[
f(x) = e^x, \hspace{1cm} P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}.
\]

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

Proof.

Let J be the interval that joins 0 to x and let $M = \max_{t \in J} e^t$.

Note that $f^{(n+1)}(t) = e^t$ for all n, then $\max_{t \in J} |f^{(n+1)}(t)| = M$.

\[
|R_n(x)| \leq M \frac{|x|^{n+1}}{(n + 1)!} \to 0 \hspace{1cm} \text{as} \hspace{1cm} n \to \infty.
\]
Taylor Polynomials of the Exponential $f(x) = e^x$

$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!}x^{n+1}.$

Taylor Polynomials of the Exponential $f(x) = e^x$

$f(x) = e^x, \quad P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}.$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

Proof.

Let J be the interval that joins 0 to x and let $M = \max_{t \in J} e^t$.

Note that $f^{(n+1)}(t) = e^t$ for all n, then $\max_{t \in J} |f^{(n+1)}(t)| = M$.

$|R_n(x)| \leq M \frac{|x|^{n+1}}{(n + 1)!} \to 0 \quad \text{as} \quad n \to \infty.$
Taylor Polynomials of the Exponential $f(x) = e^x$

$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}. $

Taylor Polynomials of the Exponential $f(x) = e^x$

$f(x) = e^x, \quad P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}. $

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

Proof.

Let J be the interval that joins 0 to x and let $M = \max_{t \in J} e^t$. Note that $f^{(n+1)}(t) = e^t$ for all n, then $\max_{t \in J} |f^{(n+1)}(t)| = M$. Hence,

$$|R_n(x)| \leq M \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n$; \hspace{1cm} $R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!}x^{n+1}$.

Taylor Polynomials of the Exponential $f(x) = e^x$

$f(x) = e^x$, \hspace{1cm} $P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}$.

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

Proof.

Let J be the interval that joins 0 to x and let $M = \max_{t\in J} e^t$.

Note that $f^{(n+1)}(t) = e^t$ for all n, then $\max_{t\in J} |f^{(n+1)}(t)| = M$.

$$|R_n(x)| \leq M \frac{|x|^{n+1}}{(n + 1)!} \to 0 \quad \text{as} \quad n \to \infty.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!}x^{n+1}.$

Taylor Polynomials of the Exponential $f(x) = e^x$

$f(x) = e^x, \quad P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}.$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

Proof.

Let J be the interval that joins 0 to x and let $M = \max_{t \in J} e^t$.

Note that $f^{(n+1)}(t) = e^t$ for all n, then $\max_{t \in J} |f^{(n+1)}(t)| = M$.

$|R_n(x)| \leq M \frac{|x|^{n+1}}{(n + 1)!} \to 0$ as $n \to \infty.$
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}. $$

Taylor Polynomials of the Exponential $f(x) = e^x$

$$f(x) = e^x, \quad P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}. $$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

Proof.

Let J be the interval that joins 0 to x and let $M = \max_{t \in J} e^t$.

Note that $f^{(n+1)}(t) = e^t$ for all n, then $\max_{t \in J} |f^{(n+1)}(t)| = M$.

$$|R_n(x)| \leq M \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty.$$
Taylor Polynomials of the Exponential $f(x) = e^x$

$$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}.$$

Taylor Polynomials of the Exponential $f(x) = e^x$

$$f(x) = e^x, \quad P_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}.$$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

Proof.

Let J be the interval that joins 0 to x and let $M = \max_{t \in J} e^t$. Note that $f^{(n+1)}(t) = e^t$ for all n, then $\max_{t \in J} |f^{(n+1)}(t)| = M$. Therefore,

$$|R_n(x)| \leq M \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty.$$
Taylor Polynomials of the Sine $f(x) = \sin x$

\[P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}. \]

\[|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)| \right) \frac{|x|^{n+1}}{(n+1)!}, \quad J = [0, x] \text{ or } [x, 0]. \]

Taylor Polynomials of the Sine $f(x) = \sin x$

\[f(x) = \sin x, \quad P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}, \text{ and so on.} \]

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

\[\forall k, \ f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t, \text{ then } \max_{t \in J} |f^{(n+1)}(t)| \leq 1. \]

\[|R_n(x)| \leq \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty. \]
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!}x^{n+1}.$$

$$|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)| \right) \frac{|x|^{n+1}}{(n + 1)!}, \quad J = [0, x] \text{ or } [x, 0].$$

Taylor Polynomials of the Sine $f(x) = \sin x$

$$f(x) = \sin x, \quad P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}, \text{ and so on.}$$

Remainder Term

For each real x, $R_n(x) \rightarrow 0$ as $n \rightarrow \infty$.

$$\forall k, f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t, \text{ then } \max_{t \in J} |f^{(n+1)}(t)| \leq 1.$$

$$|R_n(x)| \leq \frac{|x|^{n+1}}{(n + 1)!} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.$$
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!}x^{n+1}.\$$

$$|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)|\right) \frac{|x|^{n+1}}{(n + 1)!}, \quad J = [0, x] \text{ or } [x, 0].$$

Taylor Polynomials of the Sine $f(x) = \sin x$

$$f(x) = \sin x, \quad P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}, \text{ and so on.}$$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

$$\forall k, \ f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t, \text{ then } \max_{t \in J} |f^{(n+1)}(t)| \leq 1.

|R_n(x)| \leq \frac{|x|^{n+1}}{(n + 1)!} \to 0 \quad \text{as} \quad n \to \infty.$$
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}.\quad \text{for some } c \in (0, x)$$

$$|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)| \right) \frac{|x|^{n+1}}{(n+1)!}, \quad J = [0, x] \text{ or } [x, 0].$$

Taylor Polynomials of the Sine $f(x) = \sin x$

$f(x) = \sin x$, \quad $P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$, and so on.

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

$$\forall k, \ f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t, \text{ then } \max_{t \in J} |f^{(n+1)}(t)| \leq 1.$$
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}.$$

$$|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)| \right) \frac{|x|^{n+1}}{(n+1)!}, \quad J = [0, x] \text{ or } [x, 0].$$

Taylor Polynomials of the Sine $f(x) = \sin x$

$$f(x) = \sin x, \quad P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}, \quad \text{and so on.}$$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

$$\forall k, f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t, \quad \text{then } \max_{t \in J} |f^{(n+1)}(t)| \leq 1.$$

$$|R_n(x)| \leq \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty.$$
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n + 1)!}x^{n+1}.$$

$$|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)| \right) \frac{|x|^{n+1}}{(n + 1)!}, \quad J = [0, x] \text{ or } [x, 0].$$

Taylor Polynomials of the Sine $f(x) = \sin x$

$$f(x) = \sin x, \quad P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}, \text{ and so on.}$$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

\[\forall k, \ f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t, \text{ then } \max_{t \in J} |f^{(n+1)}(t)| \leq 1. \]

$$|R_n(x)| \leq \frac{|x|^{n+1}}{(n + 1)!} \to 0 \quad \text{as} \quad n \to \infty.$$
Taylor Polynomials of the Sine $f(x) = \sin x$

$$P_n(x) = f(0) + f'(0)x + \ldots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}. $$

$$|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)| \right) \frac{|x|^{n+1}}{(n+1)!}, \quad J = [0, x] \text{ or } [x, 0].$$

Taylor Polynomials of the Sine $f(x) = \sin x$

$$f(x) = \sin x, \quad P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}, \quad \text{and so on.}$$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

$$\forall k, \ f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t, \text{ then } \max_{t \in J} |f^{(n+1)}(t)| \leq 1.$$

$$|R_n(x)| \leq \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty.$$
Taylor Polynomials of the Sine $f(x) = \sin x$

Taylor Polynomials:

\[P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}. \]

Remainder Term:

\[|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)| \right) \frac{|x|^{n+1}}{(n+1)!}, \quad J = [0, x] \text{ or } [x, 0]. \]

Taylor Polynomials of the Sine $f(x) = \sin x$

\[f(x) = \sin x, \quad P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}, \text{ and so on.} \]

Remainder Term:

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

\[\forall k, \quad f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t, \text{ then } \max_{t \in J} |f^{(n+1)}(t)| \leq 1. \]

\[|R_n(x)| \leq \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty. \]
Taylor Polynomials of the Sine \(f(x) = \sin x \)

\[
P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}.
\]

\[
|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)| \right) \frac{|x|^{n+1}}{(n+1)!}, \quad J = [0, x] \text{ or } [x, 0].
\]

Taylor Polynomials of the Sine \(f(x) = \sin x \)

\[f(x) = \sin x, \quad P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}, \text{ and so on.}\]

Remainder Term

For each real \(x \), \(R_n(x) \to 0 \) as \(n \to \infty \).

\[\forall k, \ f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t, \text{ then } \max_{t \in J} |f^{(n+1)}(t)| \leq 1.\]

\[
|R_n(x)| \leq \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty.
\]
Taylor Polynomials of the Sine $f(x) = \sin x$

$P_n(x) = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!}x^n; \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$.

$|R_n(x)| \leq \left(\max_{t \in J} |f^{(n+1)}(t)| \right) \frac{|x|^{n+1}}{(n+1)!}, \quad J = [0, x] \text{ or } [x, 0]$.

Taylor Polynomials of the Sine $f(x) = \sin x$

$f(x) = \sin x, \quad P_7(x) = P_8(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}, \text{ and so on.}$

Remainder Term

For each real x, $R_n(x) \to 0$ as $n \to \infty$.

$\forall k, f^{(k)}(t) = \pm \cos t \text{ or } \pm \sin t$, then $\max_{t \in J} |f^{(n+1)}(t)| \leq 1$.

$|R_n(x)| \leq \frac{|x|^{n+1}}{(n+1)!} \to 0 \quad \text{as} \quad n \to \infty.$
Taylor Series

Taylor Polynomial and the Remainder

If $f(x)$ is infinitely differentiable on interval I containing 0, then

$$f(x) = P_n(x) + R_n(x), \quad \forall x \in I;$$

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!} x^n,$$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \quad \text{or} \quad R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x-t)^n \, dt.$$

Taylor Series

If $R_n(x) \to 0$ as $n \to \infty$, then $P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \to f(x)$.

In this case, $f(x)$ can be expanded as a Taylor series in x and write

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k.$$
Taylor Series

Taylor Polynomial and the Remainder

If \(f(x) \) is infinitely differentiable on interval \(I \) containing 0, then
\[
f(x) = P_n(x) + R_n(x), \quad \forall x \in I;
\]
\[
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!} x^n,
\]
\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \quad \text{or} \quad R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x-t)^n \, dt.
\]

Taylor Series

If \(R_n(x) \to 0 \) as \(n \to \infty \), then \(P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \to f(x) \).

In this case, \(f(x) \) can be expanded as a Taylor series in \(x \) and write
\[
f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k.
\]
Taylor Polynomial and the Remainder

If \(f(x) \) is infinitely differentiable on interval \(I \) containing 0, then

\[
f(x) = P_n(x) + R_n(x), \quad \forall x \in I;
\]

\[
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!} x^n,
\]

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \quad \text{or} \quad R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x-t)^n \, dt.
\]

Taylor Series

If \(R_n(x) \to 0 \) as \(n \to \infty \), then \(P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \to f(x) \).

In this case, \(f(x) \) can be expanded as a Taylor series in \(x \) and write

\[
f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k.
\]
Taylor Polynomial and the Remainder

If \(f(x) \) is infinitely differentiable on interval \(I \) containing 0, then
\[
f(x) = P_n(x) + R_n(x), \quad \forall x \in I;
\]
where
\[
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!} x^n,
\]
and
\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \quad \text{or} \quad R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]
Taylor Series

Taylor Polynomial and the Remainder

If \(f(x) \) is infinitely differentiable on interval \(I \) containing 0, then
\[
f(x) = P_n(x) + R_n(x), \quad \forall x \in I;
\]
\[
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!} x^n,
\]
\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \quad \text{or} \quad R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x-t)^n \, dt.
\]

Taylor Series

If \(R_n(x) \to 0 \) as \(n \to \infty \), then
\[
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \to f(x).
\]

In this case, \(f(x) \) can be expanded as a Taylor series in \(x \) and write
\[
f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k.
\]
Taylor Polynomial and the Remainder

If \(f(x) \) is infinitely differentiable on interval \(I \) containing 0, then

\[
f(x) = P_n(x) + R_n(x), \quad \forall x \in I;
\]

\[
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!} x^n,
\]

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \quad \text{or} \quad R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x - t)^n \, dt.
\]

Taylor Series

If \(R_n(x) \to 0 \) as \(n \to \infty \), then

\[
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \to f(x).
\]

In this case, \(f(x) \) can be expanded as a Taylor series in \(x \) and write

\[
f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k.
\]
Taylor Polynomials

Taylor Series

Taylor Polynomial and the Remainder

If \(f(x) \) is infinitely differentiable on interval \(I \) containing 0, then

\[
f(x) = P_n(x) + R_n(x), \quad \forall x \in I;
\]

\[
P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \cdots + \frac{f^{(n)}(0)}{n!} x^n,
\]

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \quad \text{or} \quad R_n(x) = \frac{1}{n!} \int_0^x f^{(n+1)}(t)(x-t)^n \, dt.
\]

Taylor Series

If \(R_n(x) \to 0 \) as \(n \to \infty \), then \(P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \to f(x) \).

In this case, \(f(x) \) can be expanded as a Taylor series in \(x \) and write

\[
f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k.
\]
Taylor Series of the Exponential $f(x) = e^x$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x).$$

Taylor Series of the Exponential $f(x) = e^x$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \quad \text{for all real } x$$

Number e

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$$
Taylor Series of the Exponential $f(x) = e^x$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x)$.

Taylor Series of the Exponential $f(x) = e^x$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$ for all real x

Number e

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$$
Taylor Series of the Exponential $f(x) = e^x$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x).$$

Taylor Series of the Exponential $f(x) = e^x$

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \text{ for all real } x$$

Number e

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$$
Taylor Series of the Exponential $f(x) = e^x$

\[f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \]

If \(\lim_{n \to \infty} R_n(x) \to 0 \), then \(f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x) \).

Taylor Series of the Exponential $f(x) = e^x$

\[e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \quad \text{for all real } x \]

Number e

\[e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots \]
Taylor Series of the Sine $f(x) = \sin x$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x)$.

Taylor Series of the Sine $f(x) = \sin x$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \quad \text{for all real } x$$

Number $\sin 1$

$$\sin 1 = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots$$
Taylor Series of the Sine $f(x) = \sin x$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x)$.

Taylor Series of the Sine $f(x) = \sin x$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)!} x^{2k+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \text{ for all real } x$$

Number $\sin 1$

$$\sin 1 = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots$$
Taylor Series of the Sine $f(x) = \sin x$

\[f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \]

If $\lim_{n \to \infty} R_n(x) \to 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x)$.

Taylor Series of the Sine $f(x) = \sin x$

\[\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)!} x^{2k+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \quad \text{for all real } x \]

Number $\sin 1$

\[\sin 1 = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots \]
Taylor Series of the Sine $f(x) = \sin x$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x)$.

Taylor Series of the Sine $f(x) = \sin x$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)!} x^{2k+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \quad \text{for all real } x$$

Number $\sin 1$

$$\sin 1 = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots$$
Taylor Series of the Cosine $f(x) = \cos x$

\[f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k \]

If \(\lim_{n \to \infty} R_n(x) \to 0 \), then \(f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x) \).

Taylor Series of the Cosine $f(x) = \cos x$

\[\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \quad \text{for all real } x \]

Number $\cos 1$

\[\cos 1 = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \cdots \]
Taylor Series of the Cosine $f(x) = \cos x$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x)$.

Taylor Series of the Cosine $f(x) = \cos x$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

for all real x

Number $\cos 1$

$$\cos 1 = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \cdots$$
Taylor Series of the Cosine \(f(x) = \cos x \)

\[
f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k
\]

If \(\lim_{n \to \infty} R_n(x) \to 0 \), then \(f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x) \).

Taylor Series of the Cosine \(f(x) = \cos x \)

\[
\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \quad \text{for all real } x
\]

Number \(\cos 1 \)

\[
\cos 1 = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \cdots
\]
Taylor Series of the Cosine $f(x) = \cos x$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x)$.

Taylor Series of the Cosine $f(x) = \cos x$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \quad \text{for all real } x$$

Number $\cos 1$

$$\cos 1 = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \cdots$$
Taylor Series of the Logarithm $f(x) = \ln(1 + x)$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x)$.

Taylor Series of the Logarithm $f(x) = \ln(1 + x)$

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \quad \text{for } -1 < x \leq 1$$

Number $\ln 2$

$$\ln 2 = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$
Taylor Series of the Logarithm \(f(x) = \ln(1 + x) \)

\[
f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k
\]

If \(\lim_{n \to \infty} R_n(x) \to 0 \), then

\[
f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x).
\]

Taylor Series of the Logarithm \(f(x) = \ln(1 + x) \)

\[
\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \quad \text{for} \quad -1 < x \leq 1
\]

Number \(\ln 2 \)

\[
\ln 2 = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots
\]
Taylor Series of the Logarithm $f(x) = \ln(1 + x)$

$$f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

If $\lim_{n \to \infty} R_n(x) \to 0$, then $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \lim_{n \to \infty} P_n(x)$.

Taylor Series of the Logarithm $f(x) = \ln(1 + x)$

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \quad \text{for } -1 < x \leq 1$$

Number $\ln 2$

$$\ln 2 = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$
Taylor Series of the Logarithm \(f(x) = \ln(1 + x) \)

\[
f(x) = P_n(x) + R_n(x), \quad P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k
\]

If \(\lim_{n \to \infty} R_n(x) \to 0 \), then \(f(x) = \lim_{n \to \infty} P_n(x) \).

Taylor Series of the Logarithm \(f(x) = \ln(1 + x) \)

\[
\ln(1 + x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \quad \text{for } -1 < x \leq 1
\]

Number \(\ln 2 \)

\[
\ln 2 = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots
\]
Outline

- Taylor Polynomials
 - Taylor Polynomials
 - Remainder Term

- Taylor Series
 - Taylor Series
 - Numerical Calculations