## Math 2331 – Linear Algebra

#### 1.2 Row Reduction and Echelon Forms

#### Jiwen He

Department of Mathematics, University of Houston

 ${\tt jiwenhe@math.uh.edu} \\ {\tt math.uh.edu}/{\sim} {\tt jiwenhe/math2331} \\$ 





- Echelon Form and Reduced Echelon Form
  - Uniqueness of the Reduced Echelon Form
  - Pivot and Pivot Column
  - Row Reduction Algorithm
    - Reduce to Echelon Form (Forward Phase)
    - then to REF (Backward Phase)
- Solutions of Linear Systems
  - Basic Variables and Free Variable
  - Parametric Descriptions of Solution Sets
  - Final Steps in Solving a Consistent Linear System
    - Back-Substitution
  - General Solutions
- Existence and Uniqueness Theorem
  - Using Row Reduction to Solve Linear Systems
  - Consistency Questions





## **Echelon Forms**

## Echelon Form (or Row Echelon Form)

- All nonzero rows are above any rows of all zeros.
- 2 Each leading entry (i.e. left most nonzero entry) of a row is in a column to the right of the leading entry of the row above it.
- 4 All entries in a column below a leading entry are zero.

## Examples (Echelon forms)



## Reduced Echelon Form

#### Reduced Echelon Form

Add the following conditions to conditions 1, 2, and 3 above:

- 4. The leading entry in each nonzero row is 1.
- 5. Each leading 1 is the only nonzero entry in its column.

### Example (Reduced Echelon Form)

## Theorem (Uniqueness of the Reduced Echelon Form)

Each matrix is row-equivalent to one and only one reduced echelon matrix.



#### Important Terms

- **pivot position:** a position of a leading entry in an echelon form of the matrix.
- **pivot:** a nonzero number that either is used in a pivot position to create 0's or is changed into a leading 1, which in turn is used to create 0's.
- pivot column: a column that contains a pivot position.

(See the Glossary at the back of the textbook.)





## Reduced Echelon Form: Examples

## Example (Row reduce to echelon form and locate the pivots)

$$\left[\begin{array}{ccccccc}
0 & -3 & -6 & 4 & 9 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{array}\right]$$

#### Solution

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 5 & 10 & -15 & -15 \\ 0 & -3 & -6 & 4 & 9 \end{bmatrix}$$

Possible Pivots:



pivot column

# Reduced Echelon Form: Examples (cont.)

## Example (Row reduce to echelon form (cont.))

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Original Matrix: 
$$\begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$
 pivot columns: 
$$1 \quad 2 \quad 4$$

#### Note

There is no more than one pivot in any row. There is no more than one pivot in any column.



### Example (Row reduce to echelon form and then to REF)

$$\begin{bmatrix}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{bmatrix}$$

#### Solution:

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} \sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$
$$\sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$





# Reduced Echelon Form: Examples (cont.)

## Example (Row reduce to echelon form and then to REF (cont.))

Cover the top row and look at the remaining two rows for the left-most nonzero column.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix} \sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$
$$\sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \text{ (echelon form)}$$





## Example (Row reduce to echelon form and then to REF (cont.))

## Final step to create the reduced echelon form:

Beginning with the rightmost leading entry, and working upwards to the left, create zeros above each leading entry and scale rows to transform each leading entry into 1.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 3 & 0 & -6 & 9 & 0 & -72 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$





### Important Terms

- basic variable: any variable that corresponds to a pivot column in the augmented matrix of a system.
- free variable: all nonbasic variables.

## Example (Solutions of Linear Systems)

$$\begin{bmatrix} 1 & 6 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -8 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$

$$x_1 +6x_2 +3x_4 = 0$$

$$x_3 -8x_4 = 5$$

$$x_5 = 7$$

pivot columns: basic variables: free variables:



# Solutions of Linear Systems (cont.)

## Final Step in Solving a Consistent Linear System

After the augmented matrix is in **reduced** echelon form and the system is written down as a set of equations, *Solve each equation* for the basic variable in terms of the free variables (if any) in the equation.

## Example (General Solutions of Linear Systems)

$$x_1 +6x_2 +3x_4 = 0$$
  
 $x_3 -8x_4 = 5$   
 $x_5 = 7$ 

$$\begin{cases} x_1 = -6x_2 - 3x_4 \\ x_2 \text{ is free} \\ x_3 = 5 + 8x_4 \\ x_4 \text{ is free} \\ x_5 = 7 \end{cases}$$

(general solution)

#### Warning

Use only the reduced echelon form to solve a system.



#### General Solution

The **general solution** of the system provides a parametric description of the solution set. (The free variables act as parameters.)

### Example (General Solutions of Linear Systems (cont.))

$$x_1 = -6x_2 - 3x_4$$
  
 $x_2$  is free  
 $x_3 = 5 + 8x_4$   
 $x_4$  is free  
 $x_5 = 7$ 

The above system has **infinitely many solutions**. Whv?





## Example (Existence and Uniqueness Questions)

$$\begin{bmatrix} 3x_2 & -6x_3 & +6x_4 & +4x_5 & = -5 \\ 3x_1 & -7x_2 & +8x_3 & -5x_4 & +8x_5 & = 9 \\ 3x_1 & -9x_2 & +12x_3 & -9x_4 & +6x_5 & = 15 \end{bmatrix}$$

In an earlier example, we obtained the echelon form:

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \quad (x_5 = 4)$$

No equation of the form 0 = c, where  $c \neq 0$ , so the system is **consistent**. **Free variables:**  $x_3$  and  $x_4$ .

Consistent system with free variables

 $\implies$  infinitely many solutions.



## Existence and Uniqueness Questions

## Example (Existence and Uniqueness Questions)

$$3x_{1} +4x_{2} = -3$$

$$2x_{1} +5x_{2} = 5 \rightarrow \begin{bmatrix} 3 & 4 & -3 \\ 2 & 5 & 5 \\ -2x_{1} & -3x_{2} = 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 3 & 4 & -3 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{cases} 3x_{1} + 4x_{2} = -3 \\ x_{2} = 3 \end{cases}$$

Consistent system, no free variables

 $\implies$  unique solution.





## Existence and Uniqueness Theorem

## Theorem (Existence and Uniqueness)

- 4 Innear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column, i.e., if and only if an echelon form of the augmented matrix has no row of the form
  - $\begin{bmatrix} 0 & \dots & 0 & b \end{bmatrix}$  (where b is nonzero).
- ② If a linear system is consistent, then the solution contains either
  - a unique solution (when there are no free variables) or
  - infinitely many solutions (when there is at least one free variable).





# Using Row Reduction to Solve Linear Systems

### Using Row Reduction to Solve Linear Systems

- Write the augmented matrix of the system.
- Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If not, stop; otherwise go to the next step.
- Continue row reduction to obtain the reduced echelon form.
- Write the system of equations corresponding to the matrix obtained in step 3.
- State the solution by expressing each basic variable in terms of the free variables and declare the free variables.





## **Consistency Questions**

## Example (a)

What is the largest possible number of pivots a  $4 \times 6$  matrix can have? Why?

## Example (b)

What is the largest possible number of pivots a  $6 \times 4$  matrix can have? Why?





## Example (c)

How many solutions does a consistent linear system of 3 equations and 4 unknowns have? Why?

## Example (d)

Suppose the coefficient matrix corresponding to a linear system is  $4\times 6$  and has 3 pivot columns. How many pivot columns does the augmented matrix have if the linear system is inconsistent?



