Math 2331 – Linear Algebra 1.3 Vector Equations

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

- 4 @ ▶ 4 @ ▶ 4 @ ▶

Jiwen He, University of Houston

1.3 Vector Equations

- Vector in R²
 - Geometric Description of \mathbf{R}^2
 - Parallelogram Rule
- Vectors in Rⁿ
- Linear Combinations
 - Example: Linear Combinations of Vectors in ${\ensuremath{\mathsf{R}}}^2$
- Vector Equation
- Span of a Set of Vectors: Definition
- Spanning Sets in R³
 - Geometric Description of Span{v}
 - Geometric Description of Span{*u*, *v*}

Vector

Key Concepts to Master

linear combinations of vectors and a spanning set.

Geometric Description of \mathbf{R}^2

Vector
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 is the point (x_1, x_2) in the plane.
R² is the set of all points in the plane.

Jiwen He, University of Houston

Parallelogram Rule

Parallelogram Rule for Addition of Two Vectors

If **u** and **v** in **R**² are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are **0**, **u** and **v**. (Note that $\mathbf{0} = \begin{bmatrix} 0\\0\\\end{bmatrix}$.)

Vectors in **R**²: Example

 \mathbf{x}_1

Linear Combinations of Vectors

Linear Combinations of Vectors

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbf{R}^n and given scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined by

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$

is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ using weights c_1, c_2, \dots, c_p .

Examples (Linear Combinations of
$$v_1$$
 and v_2) $3v_1 + 2v_2$, $\frac{1}{3}v_1$, $v_1 - 2v_2$, 0

1.3 Vector Equations

efinition Combinations

Linear Combinations of Vectors in R²: Example

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -2\\2 \end{bmatrix}$. Express each of the following as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{a} = \begin{bmatrix} 0\\3 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} -4\\1 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 6\\6 \end{bmatrix}, \ \mathbf{d} = \begin{bmatrix} 7\\-4 \end{bmatrix}$$

Jiwen He, University of Houston

Linear Combinations: Example

Example

Let
$$\mathbf{a}_1 = \begin{bmatrix} 1\\0\\3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 4\\2\\14 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3\\6\\10 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} -1\\8\\-5 \end{bmatrix}$.
Determine if \mathbf{b} is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

Solution: Vector **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 if can we find weights x_1, x_2, x_3 such that

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}.$$

Vector Equation (fill-in):

$$x_1 \begin{bmatrix} 1\\0\\3 \end{bmatrix} + x_2 \begin{bmatrix} 4\\2\\14 \end{bmatrix} + x_3 \begin{bmatrix} 3\\6\\10 \end{bmatrix} = \begin{bmatrix} -1\\8\\-5 \end{bmatrix}$$

< /₽ > < E > <

Linear Combinations: Example (cont.)

Corresponding System:

Corresponding Augmented Matrix:

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \implies \begin{array}{c} x_1 = \dots \\ x_2 = \dots \\ x_3 = \dots \end{array}$$

A D A D A D A

Linear Combinations: Review

Review of the last example: a_1 , a_2 , a_3 and b are columns of the augmented matrix

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \mathbf{a_1} & \mathbf{a_2} & \mathbf{a_3} & \mathbf{b} \end{bmatrix}$$

Solution to

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 = \mathbf{b}$$

is found by solving the linear system whose augmented matrix is

$$\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}$$
].

Linear Combinations and Vector Equation

Vector Equation

A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$$
.

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ if and only if there is a solution to the linear system corresponding to the augmented matrix.

Span of a Set of Vectors: Examples

Jiwen He, University of Houston

Math 2331, Linear Algebra

12 / 18

1.3 Vector Equations

finition Combinations Spa

Span of a Set of Vectors: Examples (cont.)

$\textbf{u},\,\textbf{v},\,\textbf{u}+\textbf{v}$ and $3\textbf{u}{+}4\textbf{v}$ all lie in the same plane.

Span{ \mathbf{u}, \mathbf{v} } is the set of all vectors of the form $x_1\mathbf{u} + x_2\mathbf{v}$. Here, **Span**{ \mathbf{u}, \mathbf{v} } = a plane through the origin.

H Dac

Span of a Set of Vectors: Definition

Span of a Set of Vectors

Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are in \mathbf{R}^n ; then

$$\begin{split} \textbf{Span}\{\textbf{v}_1,\textbf{v}_2,\ldots,\textbf{v}_p\} &= \text{set of all linear combinations of} \\ \textbf{v}_1,\textbf{v}_2,\ldots,\textbf{v}_p. \end{split}$$

Span of a Set of Vectors (Stated another way)

 $\pmb{\mathsf{Span}}\{\pmb{\mathsf{v}}_1,\pmb{\mathsf{v}}_2,\ldots,\pmb{\mathsf{v}}_p\}$ is the collection of all vectors that can be written as

$$x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_p\mathbf{v}_p$$

where x_1, x_2, \ldots, x_p are scalars.

Span of a Set of Vectors: Example

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 2\\1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 4\\2 \end{bmatrix}$.

(a) Find a vector in **Span**{ $\mathbf{v}_1, \mathbf{v}_2$ }.

(b) Describe $\textbf{Span}\{\textbf{v}_1,\textbf{v}_2\}$ geometrically.

Spanning Sets in \mathbf{R}^3

Spanning Sets in **R**³ (cont.)

 v_2 is **not** a multiple of v_1 **Span**{ v_1, v_2 } =plane through the origin

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Spanning Sets

Example

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$. Is \mathbf{b} in the plane spanned by the columns of A ?

Solution: ? Do x_1 and x_2 exist so that

$$x_1 \begin{bmatrix} 1\\3\\0 \end{bmatrix} + x_2 \begin{bmatrix} 2\\1\\5 \end{bmatrix} = \begin{bmatrix} 8\\3\\17 \end{bmatrix}$$

Corresponding augmented matrix:

$$\begin{bmatrix} 1 & 2 & 8 \\ 3 & 1 & 3 \\ 0 & 5 & 17 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 8 \\ 0 & -5 & -21 \\ 0 & 5 & 17 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 8 \\ 0 & -5 & -21 \\ 0 & 0 & -4 \end{bmatrix}$$

So **b** is not in the plane spanned by the columns of A

Jiwen He, University of Houston

Math 2331, Linear Algebra