Math 2331 - Linear Algebra
 1.3 Vector Equations

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

1.3 Vector Equations

- Vector in \mathbf{R}^{2}
- Geometric Description of \mathbf{R}^{2}
- Parallelogram Rule
- Vectors in $\mathbf{R}^{\boldsymbol{n}}$
- Linear Combinations
- Example: Linear Combinations of Vectors in \mathbf{R}^{2}
- Vector Equation
- Span of a Set of Vectors: Definition
- Spanning Sets in \mathbf{R}^{3}
- Geometric Description of $\operatorname{Span}\{v\}$
- Geometric Description of $\operatorname{Span}\{u, v\}$

Vector

Key Concepts to Master

linear combinations of vectors and a spanning set.

Vectors in \mathbf{R}^{n}

vectors with n entries: $\mathbf{u}=\left[\begin{array}{r}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$, a matrix with one column.

Geometric Description of \mathbf{R}^{2}

$$
\text { Vector }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { is the point }\left(x_{1}, x_{2}\right) \text { in the plane. }
$$

\mathbf{R}^{2} is the set of all points in the plane.

Parallelogram Rule

Parallelogram Rule for Addition of Two Vectors

If \mathbf{u} and \mathbf{v} in \mathbf{R}^{2} are represented as points in the plane, then $\mathbf{u}+\mathbf{v}$ corresponds to the fourth vertex of the parallelogram whose other vertices are $\mathbf{0}, \mathbf{u}$ and \mathbf{v}. (Note that $\left.\mathbf{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right].\right)$

Vectors in \mathbf{R}^{2} : Example

Example

Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Express $\mathbf{u}, 2 \mathbf{u}$, and $\frac{-3}{2} \mathbf{u}$ on a graph.

Linear Combinations of Vectors

Linear Combinations of Vectors

Given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ in \mathbf{R}^{n} and given scalars $c_{1}, c_{2}, \ldots, c_{p}$, the vector \mathbf{y} defined by

$$
\mathbf{y}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

is called a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ using weights $c_{1}, c_{2}, \ldots, c_{p}$.

Examples (Linear Combinations of \mathbf{v}_{1} and \mathbf{v}_{2})

$$
3 \mathbf{v}_{1}+2 \mathbf{v}_{2}, \quad \frac{1}{3} \mathbf{v}_{1}, \quad \mathbf{v}_{1}-2 \mathbf{v}_{2}, \quad \mathbf{0}
$$

Linear Combinations of Vectors in \mathbf{R}^{2} : Example

Example

Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 2\end{array}\right]$. Express each of the
following as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} :

$$
\mathbf{a}=\left[\begin{array}{l}
0 \\
3
\end{array}\right], \mathbf{b}=\left[\begin{array}{r}
-4 \\
1
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
6 \\
6
\end{array}\right], \mathbf{d}=\left[\begin{array}{r}
7 \\
-4
\end{array}\right]
$$

Linear Combinations: Example

Example

Let $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{r}4 \\ 2 \\ 14\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}3 \\ 6 \\ 10\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{r}-1 \\ 8 \\ -5\end{array}\right]$.
Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3}.
Solution: Vector \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} if can we find weights x_{1}, x_{2}, x_{3} such that

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}
$$

Vector Equation (fill-in):

$$
x_{1}\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{r}
4 \\
2 \\
14
\end{array}\right]+x_{3}\left[\begin{array}{r}
3 \\
6 \\
10
\end{array}\right]=\left[\begin{array}{r}
-1 \\
8 \\
-5
\end{array}\right]
$$

Linear Combinations: Example (cont.)

Corresponding System:

$$
\begin{aligned}
x_{1}+4 x_{2}+3 x_{3} & =-1 \\
2 x_{2}+6 x_{3} & =8 \\
3 x_{1}+14 x_{2}+10 x_{3} & =-5
\end{aligned}
$$

Corresponding Augmented Matrix:

$$
\left[\begin{array}{cccc}
1 & 4 & 3 & -1 \\
0 & 2 & 6 & 8 \\
3 & 14 & 10 & -5
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right] \quad \Longrightarrow \quad \begin{aligned}
& x_{1}=-\ldots \\
& x_{2}=- \\
& x_{3}=
\end{aligned}
$$

Linear Combinations: Review

Review of the last example: $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ and \mathbf{b} are columns of the augmented matrix

$$
\left.\begin{array}{c}
{\left[\begin{array}{rrrr}
1 & 4 & 3 & -1 \\
0 & 2 & 6 & 8 \\
3 & 14 & 10 & -5
\end{array}\right]} \\
\uparrow \\
\uparrow
\end{array}\right) \uparrow \begin{array}{cc}
\uparrow \\
\mathbf{a}_{1} & \mathbf{a}_{2} \\
\mathbf{a}_{3} & \mathbf{b}
\end{array}
$$

Solution to

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}=\mathbf{b}
$$

is found by solving the linear system whose augmented matrix is

$$
\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{b}
\end{array}\right] .
$$

Linear Combinations and Vector Equation

Vector Equation

A vector equation

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}
$$

has the same solution set as the linear system whose augmented matrix is

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} & \mathbf{b}
\end{array}\right] .
$$

In particular, \mathbf{b} can be generated by a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ if and only if there is a solution to the linear system corresponding to the augmented matrix.

Span of a Set of Vectors: Examples

Example
Let $\mathbf{v}=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$
Label the origin $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
together with

$$
\mathbf{v}, 2 \mathbf{v} \text { and } 1.5 \mathbf{v}
$$

on the graph.
$\mathbf{v}, 2 \mathbf{v}$ and $1.5 \mathbf{v}$ all lie on the same line.

Span $\{\mathbf{v}\}$ is the set of all vectors of the form $\mathbf{c v}$. Here, $\operatorname{Span}\{\mathbf{v}\}=$ a line through the origin.

Span of a Set of Vectors: Examples (cont.)

```
Example
Label
u, v, u}+\mathbf{v}\mathrm{ and 3u+4v
on the graph.
```


$\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$ and $3 \mathbf{u}+4 \mathbf{v}$ all lie in the same plane.
$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is the set of all vectors of the form $x_{1} \mathbf{u}+x_{2} \mathbf{v}$. Here, $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}=$ a plane through the origin.

Span of a Set of Vectors: Definition

Span of a Set of Vectors

Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ are in $\mathbf{R}^{\boldsymbol{n}}$; then

$$
\begin{gathered}
\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}=\text { set of all linear combinations of } \\
\qquad \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p} .
\end{gathered}
$$

Span of a Set of Vectors (Stated another way)

$\boldsymbol{\operatorname { S p a n }}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is the collection of all vectors that can be written as

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}
$$

where $x_{1}, x_{2}, \ldots, x_{p}$ are scalars.

Span of a Set of Vectors: Example

Example

Let $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$.
(a) Find a vector in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
(b) Describe $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ geometrically.

Spanning Sets in \mathbf{R}^{3}

Example

\mathbf{v}_{2} is a multiple of \mathbf{v}_{1}
$\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{Span}\left\{\mathbf{v}_{1}\right\}$
$=\boldsymbol{S p a n}\left\{\mathbf{v}_{2}\right\}$
(line through the origin)

Spanning Sets in \mathbf{R}^{3} (cont.)

$$
\mathrm{x}_{3}
$$

$$
\begin{aligned}
& \text { Example } \\
& \text { Let } \mathbf{v}_{1}=\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right] \\
& \text { and } \mathbf{v}_{2}=\left[\begin{array}{l}
6 \\
3 \\
3
\end{array}\right] .
\end{aligned}
$$

Is $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ a line or a plane?

> \mathbf{v}_{2} is not a multiple of \mathbf{v}_{1} $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=$ plane through the origin

Spanning Sets

Example

Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 0 & 5\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}8 \\ 3 \\ 17\end{array}\right]$. Is \mathbf{b} in the plane
spanned by the columns of A ?
Solution: ? Do x_{1} and x_{2} exist so that

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
8 \\
3 \\
17
\end{array}\right]
$$

Corresponding augmented matrix:

$$
\left[\begin{array}{ccc}
1 & 2 & 8 \\
3 & 1 & 3 \\
0 & 5 & 17
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 8 \\
0 & -5 & -21 \\
0 & 5 & 17
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 2 & 8 \\
0 & -5 & -21 \\
0 & 0 & -4
\end{array}\right]
$$

So \mathbf{b} is not in the plane spanned by the columns of A

