Math 2331 – Linear Algebra 1.5 Solutions Sets of Linear Systems

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

・ 何 ト ・ ヨ ト ・ ヨ ト

Jiwen He, University of Houston

1.5 Solutions Sets of Linear Systems

- Homogeneous System
 - Nontrivial Solutions
 - Writing Solution Set in Parametric Vector Form
- Nonhomogeneous System
 - Theorem: Solutions of Nonhomogeneous System
 - Writing Solution Set in Parametric Vector Form

Homogeneous System

Homogeneous System

$$A\mathbf{x} = \mathbf{0}$$

(A is $m \times n$ and **0** is the zero vector in \mathbf{R}^m)

Example

Corresponding matrix equation $A\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} 1 & 10 \\ 2 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Trivial solution: $\mathbf{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ or $\mathbf{x} = \mathbf{0}$

э

イロト イポト イヨト イヨト

Homogeneous System: Nontrivial Solutions

The homogeneous system $A\mathbf{x} = \mathbf{0}$ always has the **trivial solution**, $\mathbf{x} = \mathbf{0}$.

Nontrivial Solution

Nonzero vector solutions are called nontrivial solutions.

Example (cont.)

```
Do nontrivial solutions exist?
```

$$\begin{bmatrix} 1 & 10 & 0 \\ 2 & 20 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 10 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Consistent system with a free variable has infinitely many solutions.

A homogeneous equation $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions if and only if the system of equations has

Homogeneous System: Example 1

Example (1)

Determine if the following homogeneous system has nontrivial solutions and then describe the solution set.

Solution: There is at least one free variable (why?) \implies nontrivial solutions exist

 $x_1 =$

 $X_{3} =$

$$\sim \left[\begin{array}{rrrr} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}
ight] \Longrightarrow \quad x_2 \quad \text{ is free}$$

Homogeneous System: Example 1 (cont.)

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2x_2 \\ x_2 \\ 0 \end{bmatrix} = \dots \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} = x_2 \mathbf{v}$$

Graphical representation:

solution set = span $\{\bm{v}\}$ = line through $\bm{0}$ in \bm{R}^3

Nonhomogeneous System: Example 2

Example (2)

Describe the solution set of

Solution:

$$\begin{bmatrix} 2 & 4 & -6 & 0 \\ 4 & 8 & -10 & 4 \end{bmatrix} \text{ row reduces to } \begin{bmatrix} 1 & 2 & 0 & 6 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Nonhomogeneous System: Example 2 (cont.)

$$\mathbf{x} = \begin{bmatrix} 6\\0\\2 \end{bmatrix} + x_2 \begin{bmatrix} -2\\1\\0 \end{bmatrix} = \mathbf{p} + x_2 \mathbf{v}$$

Graphical representation:

Jiwen He, University of Houston

Math 2331, Linear Algebra

Nonhomogeneous System: Recap of Previous Two Examples

Example (1. Solution of $A\mathbf{x} = \mathbf{0}$)

$$\mathbf{x} = x_2 \begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix} = x_2 \mathbf{v}$$

 $\textbf{x} = x_2 \textbf{v} =$ parametric equation of line passing through 0 and v

Example (2. Solution of $A\mathbf{x} = \mathbf{b}$)

$$\mathbf{x} = \begin{bmatrix} 6\\0\\2 \end{bmatrix} + x_2 \begin{bmatrix} -2\\1\\0 \end{bmatrix} = \mathbf{p} + x_2 \mathbf{v}$$

 $\mathbf{x} = \mathbf{p} + x_2 \mathbf{v} =$ parametric equation of line passing through \mathbf{p} parallel to \mathbf{v}

Jiwen He, University of Houston

Math 2331, Linear Algebra

屮

Nonhomogeneous System: Theorem

Parallel solution sets of $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = \mathbf{0}$

Theorem

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and let \mathbf{p} be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Nonhomogeneous System: Example

Example

Describe the solution set of $2x_1 - 4x_2 - 4x_3 = 0$; compare it to the solution set $2x_1 - 4x_2 - 4x_3 = 6$.

Solution: Corresponding augmented matrix to $2x_1 - 4x_2 - 4x_3 = 0$:

$$\begin{bmatrix} 2 & -4 & -4 & 0 \end{bmatrix} \sim$$
 (fill-in)

Vector form of the solution:

$$\mathbf{v} = \begin{bmatrix} 2x_2 + 2x_3 \\ x_2 \\ x_3 \end{bmatrix} = \dots \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \dots \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

Corresponding augmented matrix to $2x_1 - 4x_2 - 4x_3 = 6$:

$$\begin{bmatrix} 2 & -4 & -4 & 6 \end{bmatrix} \sim$$
 (fill -in) Ψ

・ロト ・ 同ト ・ ヨト ・ ヨト

Nonhomogeneous System: Example (cont.)

Vector form of the solution:

