Math 2331 - Linear Algebra

1.5 Solutions Sets of Linear Systems

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

1.5 Solutions Sets of Linear Systems

- Homogeneous System
- Nontrivial Solutions
- Writing Solution Set in Parametric Vector Form
- Nonhomogeneous System
- Theorem: Solutions of Nonhomogeneous System
- Writing Solution Set in Parametric Vector Form

Homogeneous System

Homogeneous System

$$
A \mathbf{x}=\mathbf{0}
$$

(A is $m \times n$ and $\mathbf{0}$ is the zero vector in \mathbf{R}^{m})
Example

$$
\begin{aligned}
x_{1}+10 x_{2} & =0 \\
2 x_{1}+20 x_{2} & =0
\end{aligned}
$$

Corresponding matrix equation $A \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{ll}
1 & 10 \\
2 & 20
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Trivial solution: $\mathbf{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad$ or $\quad \mathbf{x}=\mathbf{0}$

Homogeneous System: Nontrivial Solutions

The homogeneous system $A \mathbf{x}=\mathbf{0}$ always has the trivial solution, $\mathbf{x}=\mathbf{0}$.

Nontrivial Solution

Nonzero vector solutions are called nontrivial solutions.
Example (cont.)
Do nontrivial solutions exist?

$$
\left[\begin{array}{lll}
1 & 10 & 0 \\
2 & 20 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 10 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Consistent system with a free variable has infinitely many solutions.

A homogeneous equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions if and only if the system of equations has

Homogeneous System: Example 1

Example (1)

Determine if the following homogeneous system has nontrivial solutions and then describe the solution set.

$$
\begin{array}{r}
2 x_{1}+4 x_{2}-6 x_{3}=0 \\
4 x_{1}+8 x_{2}-10 x_{3}=0
\end{array}
$$

Solution: There is at least one free variable (why?)
\Longrightarrow nontrivial solutions exist

$$
\begin{gathered}
{\left[\begin{array}{rrrr}
2 & 4 & -6 & 0 \\
4 & 8 & -10 & 0
\end{array}\right] \sim\left[\begin{array}{llrl}
1 & 2 & -3 & 0 \\
4 & 8 & -10 & 0
\end{array}\right] \sim\left[\begin{array}{rrrr}
1 & 2 & -3 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]} \\
x_{1}=
\end{gathered}
$$

$$
\sim\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \Longrightarrow \quad x_{2} \quad \text { is free }
$$

$$
x_{3}=
$$

Homogeneous System: Example 1 (cont.)

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2} \\
x_{2} \\
0
\end{array}\right]=--\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]=x_{2} \mathbf{v}
$$

Graphical representation:

solution set $=\operatorname{span}\{\mathbf{v}\}=$ line through $\mathbf{0}$ in \mathbf{R}^{3}

Nonhomogeneous System: Example 2

Example (2)

Describe the solution set of

$$
\begin{gathered}
2 x_{1}+4 x_{2}-6 x_{3}=0 \\
4 x_{1}+8 x_{2}-10 x_{3}=4 \\
\text { (same left side as in the previous example) }
\end{gathered}
$$

Solution:

$$
\begin{gathered}
{\left[\begin{array}{rrrr}
2 & 4 & -6 & 0 \\
4 & 8 & -10 & 4
\end{array}\right] \quad \text { row reduces to } \quad\left[\begin{array}{llll}
1 & 2 & 0 & 6 \\
0 & 0 & 1 & 2
\end{array}\right]} \\
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=
\end{gathered}
$$

Nonhomogeneous System: Example 2 (cont.)

$$
\mathbf{x}=\left[\begin{array}{l}
6 \\
0 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]=\mathbf{p}+x_{2} \mathbf{v}
$$

Graphical representation:

$$
\text { Parallel solution sets of } A \mathbf{x}=\mathbf{0} \& A \mathbf{x}=\mathbf{b}
$$

Nonhomogeneous System: Recap of Previous Two Examples

Example (1. Solution of $A \mathbf{x}=\mathbf{0}$)

$$
\mathbf{x}=x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]=x_{2} \mathbf{v}
$$

$\mathbf{x}=x_{2} \mathbf{v}=$ parametric equation of line passing through $\mathbf{0}$ and \mathbf{v}

Example (2. Solution of $\mathbf{A x}=\mathbf{b}$)

$$
\mathbf{x}=\left[\begin{array}{l}
6 \\
0 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]=\mathbf{p}+x_{2} \mathbf{v}
$$

$\mathbf{x}=\mathbf{p}+x_{2} \mathbf{v}=$ parametric equation of line passing through \mathbf{p} parallel to \mathbf{v}

Nonhomogeneous System: Theorem

Parallel solution sets of $A \mathbf{x}=\mathbf{b}$ and $A \mathbf{x}=\mathbf{0}$

Theorem

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for some given \mathbf{b}, and let \mathbf{p} be a solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form $\mathbf{w}=\mathbf{p}+\mathbf{v}_{h}$, where \mathbf{v}_{h} is any solution of the homogeneous equation $A \mathbf{x}=\mathbf{0}$.

Nonhomogeneous System: Example

Example

Describe the solution set of $2 x_{1}-4 x_{2}-4 x_{3}=0$; compare it to the solution set $2 x_{1}-4 x_{2}-4 x_{3}=6$.

Solution: Corresponding augmented matrix to $2 x_{1}-4 x_{2}-4 x_{3}=0$:

$$
\left[\begin{array}{llll}
2 & -4 & -4 & 0 \tag{fill-in}
\end{array}\right] \sim
$$

Vector form of the solution:

$$
\mathbf{v}=\left[\begin{array}{l}
2 x_{2}+2 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=---\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+\ldots--\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

Corresponding augmented matrix to $2 x_{1}-4 x_{2}-4 x_{3}=6$:

$$
\left[\begin{array}{cccc}
2 & -4 & -4 & 6 \tag{fill-in}
\end{array}\right] \sim
$$

Nonhomogeneous System: Example (cont.)

Vector form of the solution:

$$
\mathbf{v}=\left[\begin{array}{cc}
3+2 x_{2}+2 x_{3} \\
x_{2} & \\
& x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right.
$$

$$
\text { Parallel Solution Sets of } A \mathbf{x}=\mathbf{0} \text { and } A \mathbf{x}=\mathbf{b}
$$

