Math 2331 – Linear Algebra 1.8 Introduction to Linear Transformations

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

1.8 Introduction to Linear Transformations

- Matrix Transformations
 - Matrix Acting on Vector
 - Matrix-Vector Multiplication
 - Transformation: Domain and Range
 - Examples
 - Applications
 - Computer Graphics
- Linear Transformation
 - Definition
 - Examples
 - Matrix Transformations

B ▶ < B ▶

Matrix Transformations

Another Way to Vview $A\mathbf{x} = \mathbf{b}$

Matrix A is an object acting on \mathbf{x} by multiplication to produce a new vector $A\mathbf{x}$ or \mathbf{b} .

Example

$$\begin{bmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -8 \\ -12 \\ -4 \end{bmatrix}$$
$$\begin{bmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Matrix Transformations

Matrix Transformations

Suppose *A* is $m \times n$. Solving $A\mathbf{x} = \mathbf{b}$ amounts to finding all _____ in \mathbf{R}^n which are transformed into vector \mathbf{b} in \mathbf{R}^m through multiplication by *A*.

multiply by A

transformation "machine"

A 回下 < 三下 </p>

Transformation

Transformation

A transformation T from \mathbf{R}^n to \mathbf{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbf{R}^n a vector $T(\mathbf{x})$ in \mathbf{R}^m .

 $T: \mathbf{R}^n \longrightarrow \mathbf{R}^m$

Terminology

 \mathbf{R}^n : domain of T

 \mathbf{R}^m : codomain of T

 $T(\mathbf{x})$ in \mathbf{R}^{m} is the **image** of \mathbf{x} under the transformation T

Set of all images $T(\mathbf{x})$ is the range of T

Jiwen He, University of Houston

Math 2331, Linear Algebra

Matrix Transformations: Example

Example

Let
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$$
. Define $T : \mathbf{R}^2 \longrightarrow \mathbf{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$.
Then if $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$

Matrix Transformations: Example

Example

Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$ and
 $\mathbf{c} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$. Define a transformation $T : \mathbf{R}^3 \to \mathbf{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$.
a. Find an \mathbf{x} in \mathbf{R}^3 whose image under T is \mathbf{b} .
b. Is there more than one \mathbf{x} under T whose image is \mathbf{b} .
(uniqueness problem)

c. Determine if \mathbf{c} is in the range of the transformation T. *(existence problem)*

Solution: (a) Solve _____= for x, or

$$\begin{bmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -10 \end{bmatrix}$$

Jiwen He, University of Houston

Matrix Transformations: Example (cont.)

Augmented matrix:

$$\left[\begin{array}{rrrrr} 1 & -2 & 3 & 2 \\ -5 & 10 & -15 & -10 \end{array}\right] \sim \left[\begin{array}{rrrrr} 1 & -2 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

 $x_1 = 2x_2 - 3x_3 + 2$ $x_2 \text{ is free}$ $x_3 \text{ is free}$

Let
$$x_2 = ___$$
 and $x_3 = ___$. Then $x_1 = ___$.
So $\mathbf{x} = \begin{bmatrix} \\ \\ \end{bmatrix}$

・ 何 ト ・ ヨ ト ・ ヨ ト

イロト 不得下 イヨト イヨト

Matrix Transformations: Example (cont.)

(b) Is there an **x** for which $T(\mathbf{x}) = \mathbf{b}$?

Free variables exist \downarrow There is more than one **x** for which $T(\mathbf{x}) = \mathbf{b}$

(c) Is there an **x** for which $T(\mathbf{x}) = \mathbf{c}$? This is another way of

asking if $A\mathbf{x} = \mathbf{c}$ is _____. Augmented matrix:

 $\left[\begin{array}{rrrr}1 & -2 & 3 & 3\\-5 & 10 & -15 & 0\end{array}\right] \sim \left[\begin{array}{rrrr}1 & -2 & 3 & 0\\0 & 0 & 0 & 1\end{array}\right]$

 \mathbf{c} is not in the _____ of \mathcal{T} .

Matrix Transformations: Applications

Matrix transformations have many applications - including *computer graphics*

Example

Let
$$A = \begin{bmatrix} .5 & 0 \\ 0 & .5 \end{bmatrix}$$
. The transformation $T : \mathbf{R}^2 \to \mathbf{R}^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is an example of a **contraction** transformation. The transformation $T(\mathbf{x}) = A\mathbf{x}$ can be used to move a point \mathbf{x} .

$$\mathbf{u} = \begin{bmatrix} 8\\6 \end{bmatrix} \qquad \qquad T(\mathbf{u}) = \begin{bmatrix} .5 & 0\\0 & .5 \end{bmatrix} \begin{bmatrix} 8\\6 \end{bmatrix} = \begin{bmatrix} 4\\3 \end{bmatrix}$$

Matrix Transformation Example Linear Transformation

Matrix Transformations: Applications (cont.)

Linear Transformations

If A is $m \times n$, then the transformation $T(\mathbf{x}) = A\mathbf{x}$ has the following properties:

$$T(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) = \dots + \dots$$

= _____ + _____

and

$$T(c\mathbf{u}) = A(c\mathbf{u}) = ____A\mathbf{u} = ____T(\mathbf{u})$$

for all \mathbf{u}, \mathbf{v} in \mathbf{R}^n and all scalars c.

Linear Transformation

A transformation T is **linear** if:

$$\mathbf{D} \quad T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ for all } \mathbf{u}, \mathbf{v} \text{ in the domain of } T.$$

2 $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c.

Linear Transformation: Definition

Every matrix transformation is a **linear** transformation.

RESULT

If \mathcal{T} is a linear transformation, then

$$T(\mathbf{0}) = \mathbf{0}$$
 and $T(c\mathbf{u} + d\mathbf{v}) = c\mathbf{T}(\mathbf{u}) + d\mathbf{T}(\mathbf{v})$.

Proof:

$$T (\mathbf{0}) = T (\mathbf{0}\mathbf{u}) = \dots T (\mathbf{u}) = \dots$$
$$T (c\mathbf{u} + d\mathbf{v}) = T () + T ()$$

$$= ----T() + ----T($$

Jiwen He, University of Houston

・ 何 ト ・ ヨ ト ・ ヨ ト

(日) (周) (三) (三)

Matrix Transformations: Example

Example

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ and $\mathbf{y}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.
Suppose $T : \mathbf{R}^2 \to \mathbf{R}^3$ is a linear transformation which maps \mathbf{e}_1 into \mathbf{y}_1 and \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Solution: First, note that

$$T(\mathbf{e}_1) = \dots$$
 and $T(\mathbf{e}_2) = \dots$

Also

E

1.8 Introduction to Linear Transformations

Matrix Transformation Example Linear Transformation

Matrix Transformations: Example (cont.)

Then

$$T\left(\begin{bmatrix}3\\2\end{bmatrix}\right) = T\left(__\mathbf{e}_1 + __\mathbf{e}_2\right) =$$
$$__T\left(\mathbf{e}_1\right) + __T\left(\mathbf{e}_2\right) =$$

- ∢ ∃ ▶

1.8 Introduction to Linear Transformations

Aatrix Transformation Example Linear Transformation

Matrix Transformations: Example (cont.)

Also

$$T\left(\left[\begin{array}{c} x_1\\ x_2\end{array}\right]\right) = T\left(___\mathbf{e}_1 + ___\mathbf{e}_2\right) =$$
$$___T\left(\mathbf{e}_1\right) + ___T\left(\mathbf{e}_2\right) =$$

呥

Jiwen He, University of Houston

· · · · · · · · ·

Matrix Transformations: Example

Example

Define $T : \mathbf{R}^3 \to \mathbf{R}^2$ such that $T(x_1, x_2, x_3) = (|x_1 + x_3|, 2 + 5x_2)$. Show that T is a not a linear transformation.

Solution: Another way to write the transformation:

$$T\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} |x_1+x_3|\\ 2+5x_2 \end{array}\right]$$

Provide a **counterexample** - example where $T(\mathbf{0}) = \mathbf{0}$, $T(c\mathbf{u}) = c\mathbf{T}(\mathbf{u})$ or $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ is violated. *A counterexample:*

$$T(\mathbf{0}) = T\left(\begin{bmatrix} 0\\0\\0 \end{bmatrix} \right) = \begin{bmatrix} & & \\ \end{bmatrix} \neq \dots$$

which means that T is not linear.

Matrix Transformations: Example (cont.)

Another counterexample: Let
$$c = -1$$
 and $\mathbf{u} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$. Then

$$T(\mathbf{cu}) = T\left(\begin{bmatrix} -1\\ -1\\ -1 \end{bmatrix} \right) = \begin{bmatrix} |-1+-1|\\ 2+5(-1) \end{bmatrix} = \begin{bmatrix} 2\\ -3 \end{bmatrix}$$

and

not

$$cT(\mathbf{u}) = -1T\left(\begin{bmatrix} 1\\1\\1 \end{bmatrix} \right) = -1\begin{bmatrix} & \\ \end{bmatrix} = \begin{bmatrix} & \\ \end{bmatrix}$$

Therefore $T(c\mathbf{u}) \neq __T(\mathbf{u})$ and therefore T is

.

・ロト ・聞ト ・ ヨト ・ ヨト

Jiwen He, University of Houston

18 / 18