Math 2331 - Linear Algebra

1.8 Introduction to Linear Transformations

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

1.8 Introduction to Linear Transformations

- Matrix Transformations
- Matrix Acting on Vector
- Matrix-Vector Multiplication
- Transformation: Domain and Range
- Examples
- Applications
- Computer Graphics
- Linear Transformation
- Definition
- Examples
- Matrix Transformations

Matrix Transformations

Another Way to Vview $\mathbf{A x}=\mathbf{b}$

Matrix A is an object acting on \mathbf{x} by multiplication to produce a new vector $A \mathbf{x}$ or \mathbf{b}.

Example

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & -4 \\
3 & -6 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-8 \\
-12 \\
-4
\end{array}\right]} \\
& {\left[\begin{array}{ll}
2 & -4 \\
3 & -6 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Matrix Transformations

Matrix Transformations

Suppose A is $m \times n$. Solving $A \mathbf{x}=\mathbf{b}$ amounts to finding all \mathbf{R}^{n} which are transformed into vector \mathbf{b} in \mathbf{R}^{m} through multiplication by A.

Transformation

Transformation

A transformation T from \mathbf{R}^{n} to \mathbf{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbf{R}^{n} a vector $T(\mathbf{x})$ in \mathbf{R}^{m}.

$$
T: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m}
$$

Terminology

\mathbf{R}^{n} : domain of T
\mathbf{R}^{m} : codomain of T
$T(\mathbf{x})$ in \mathbf{R}^{m} is the image of \mathbf{x} under the transformation T
Set of all images $T(\mathbf{x})$ is the range of T

Matrix Transformations: Example

Example

Let $A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]$. Define $T: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
Then if $\mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right], T(\mathbf{x})=A \mathbf{x}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right]$

Matrix Transformations: Example

Example

Let $A=\left[\begin{array}{rrr}1 & -2 & 3 \\ -5 & 10 & -15\end{array}\right], \mathbf{u}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right], \mathbf{b}=\left[\begin{array}{c}2 \\ -10\end{array}\right]$ and
$\mathbf{c}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$. Define a transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$.
a. Find an \mathbf{x} in \mathbf{R}^{3} whose image under T is \mathbf{b}.
b. Is there more than one \mathbf{x} under T whose image is \mathbf{b}.
(uniqueness problem)
c. Determine if \mathbf{c} is in the range of the transformation T. (existence problem)

Solution:

$$
\begin{aligned}
& \text { (a) Solve }-\ldots=-\quad \text { for } \mathbf{x} \text {, or } \\
& {\left[\begin{array}{rrr}
1 & -2 & 3 \\
-5 & 10 & -15
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-10
\end{array}\right]}
\end{aligned}
$$

Matrix Transformations: Example (cont.)

Augmented matrix:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
-5 & 10 & -15 & -10
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\qquad \begin{array}{c}
x_{1}=2 x_{2}-3 x_{3}+2 \\
x_{2} \text { is free } \\
x_{3} \text { is free }
\end{array} \\
\text { Let } x_{2}=\ldots-\ldots \text { and } x_{3}=\ldots . . \text { Then } x_{1}=\ldots
\end{gathered}
$$

Matrix Transformations: Example (cont.)

(b) Is there an \mathbf{x} for which $T(\mathbf{x})=\mathbf{b}$?

Free variables exist \Downarrow
There is more than one \mathbf{x} for which $T(\mathbf{x})=\mathbf{b}$
(c) Is there an \mathbf{x} for which $T(\mathbf{x})=\mathbf{c}$? This is another way of asking if $A \mathbf{x}=\mathbf{c}$ is \qquad .
Augmented matrix:

$$
\left[\begin{array}{cccc}
1 & -2 & 3 & 3 \\
-5 & 10 & -15 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

c is not in the \qquad of T.

Matrix Transformations: Applications

Matrix transformations have many applications - including computer graphics

Example

Let $A=\left[\begin{array}{rr}.5 & 0 \\ 0 & .5\end{array}\right]$. The transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by
$T(\mathbf{x})=A \mathbf{x}$ is an example of a contraction transformation. The transformation $T(\mathbf{x})=A \mathbf{x}$ can be used to move a point \mathbf{x}.

$$
\mathbf{u}=\left[\begin{array}{l}
8 \\
6
\end{array}\right] \quad T(\mathbf{u})=\left[\begin{array}{rr}
.5 & 0 \\
0 & .5
\end{array}\right]\left[\begin{array}{l}
8 \\
6
\end{array}\right]=\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

Matrix Transformations: Applications (cont.)

Linear Transformations

If A is $m \times n$, then the transformation $T(\mathbf{x})=A \mathbf{x}$ has the following properties:

and

$$
T(c \mathbf{u})=A(c \mathbf{u})=_{\ldots-\ldots} A \mathbf{u}=\ldots T(\mathbf{u})
$$

for all \mathbf{u}, \mathbf{v} in \mathbf{R}^{n} and all scalars c.

Linear Transformation

A transformation T is linear if:
(1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T.
(2) $T(c \mathbf{u})=c T(\mathbf{u})$ for all \mathbf{u} in the domain of T and all scalars c.

$$
\begin{aligned}
& T(\mathbf{u}+\mathbf{v})=A(\mathbf{u}+\mathbf{v})=\ldots \ldots-\ldots+ \\
& \text { = _-_-_- + _-_-_- }
\end{aligned}
$$

Linear Transformation: Definition

Every matrix transformation is a linear transformation.

RESULT

If T is a linear transformation, then

$$
T(\mathbf{0})=\mathbf{0} \quad \text { and } \quad T(c \mathbf{u}+d \mathbf{v})=c \mathbf{T}(\mathbf{u})+d \mathbf{T}(\mathbf{v}) .
$$

Proof:

$$
\begin{gathered}
T(\mathbf{0})=T(0 \mathbf{u})=\ldots T(\mathbf{u})=\ldots \\
T(c \mathbf{u}+d \mathbf{v})=T(\quad)+T\left(\begin{array}{l}
\\
\quad=\ldots-\ldots T(\quad)+\ldots-\ldots-\ldots
\end{array}\right)
\end{gathered}
$$

Matrix Transformations: Example

Example

Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $\mathbf{y}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
Suppose $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ is a linear transformation which maps \mathbf{e}_{1} into \mathbf{y}_{1} and \mathbf{e}_{2} into \mathbf{y}_{2}. Find the images of $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.

Solution: First, note that

$$
T\left(\mathbf{e}_{1}\right)=\ldots-\cdots \quad \text { and } \quad T\left(\mathbf{e}_{2}\right)=\ldots-\ldots
$$

Also

$$
\mathbf{- -}_{1}+\ldots \mathbf{e}_{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Matrix Transformations: Example (cont.)

Then

$$
\begin{gathered}
T\left(\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)=T\left(\ldots \mathbf{e}_{1}+\ldots \mathbf{e}_{2}\right)= \\
\ldots-\ldots\left(\mathbf{e}_{1}\right)+\ldots T\left(\mathbf{e}_{2}\right)=
\end{gathered}
$$

Matrix Transformations: Example (cont.)

Also

$$
\begin{gathered}
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=T\left(\ldots \ldots \mathbf{e}_{1}+\ldots \ldots \mathbf{e}_{2}\right)= \\
\ldots T\left(\mathbf{e}_{1}\right)+\ldots T\left(\mathbf{e}_{2}\right)=
\end{gathered}
$$

Matrix Transformations: Example

Example

Define $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ such that $T\left(x_{1}, x_{2}, x_{3}\right)=\left(\left|x_{1}+x_{3}\right|, 2+5 x_{2}\right)$. Show that T is a not a linear transformation.
Solution: Another way to write the transformation:

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
\left|x_{1}+x_{3}\right| \\
2+5 x_{2}
\end{array}\right]
$$

Provide a counterexample - example where $T(\mathbf{0})=\mathbf{0}$, $T(c \mathbf{u})=c \mathbf{T}(\mathbf{u})$ or $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ is violated.
A counterexample:

$$
T(\mathbf{0})=T\left(\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)=[\quad] \neq
$$

which means that T is not linear.

Matrix Transformations: Example (cont.)

Another counterexample: Let $c=-1$ and $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then

$$
T(c \mathbf{u})=T\left(\left[\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
|-1+-1| \\
2+5(-1)
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

and

$$
c T(\mathbf{u})=-1 T\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right)=-1[\quad]=[\quad]
$$

Therefore $T(c \mathbf{u}) \neq \ldots T(\mathbf{u})$ and therefore T is
not

