Math 2331 - Linear Algebra

1.9 The Matrix of a Linear Transformation

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

1.9 The Matrix of a Linear Transformation

- Matrix Transformation: Identity Matrix
- Linear Transformation: Generalized Result
- Matrix of a Linear Transformation
- Theorem
- Examples
- Geometric Linear Transformations of \mathbf{R}^{2}

Identity Matrix

Identity Matrix

I_{n} is an $n \times n$ matrix with 1 's on the main left to right diagonal and 0 's elsewhere. The ith column of I_{n} is labeled \mathbf{e}_{i}.

Example

$$
I_{3}=\left[\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note that

$$
I_{3} \mathbf{x}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Linear Transformation

Identity Matrix

In general, for \mathbf{x} in $\mathbf{R}^{n}, \quad I_{n} \mathbf{x}=$ _--

Linear Transformation

From Section 1.8, if $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a linear transformation, then $T(c \mathbf{u}+d \mathbf{v})=c \mathbf{T}(\mathbf{u})+d \mathbf{T}(\mathbf{v})$.

Generalized Result

$$
T\left(c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+\cdots+c_{p} T\left(\mathbf{v}_{p}\right) .
$$

Linear Transformation: Example

Example

The columns of $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Suppose T is a linear transformation from \mathbf{R}^{2} to \mathbf{R}^{3} where

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right] \text { and } T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}
5 \\
0 \\
1
\end{array}\right]
$$

Compute $T(\mathbf{x})$ for any $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
Solution: A vector \mathbf{x} in \mathbf{R}^{2} can be written as

Linear Transformation: Example (cont.)

Then

$$
\left.\begin{array}{rl}
T(\mathbf{x})=T\left(x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}\right)=\ldots T\left(\mathbf{e}_{1}\right)+\ldots-\ldots T\left(\mathbf{e}_{2}\right) \\
=------\left[\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right]+\ldots \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
\hline-\ldots--
\end{array}\right.
$$

Note that

$$
T(\mathbf{x})=[\quad]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

So

$$
T(\mathbf{x})=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right)
\end{array}\right] \mathbf{x}=A \mathbf{x}
$$

To get A, replace the identity matrix $\left[\mathbf{e}_{1} \mathbf{e}_{2}\right]$ with $\left[T\left(\mathbf{e}_{2}\right) T\left(\mathbf{e}_{2}\right)\right]$.

Matrix of Linear Transformation: Theorem

Theorem

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbf{R}^{n} .
$$

In fact, A is the $m \times n$ matrix whose j th column is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the jth column of the identity matrix in \mathbf{R}^{n}.

$$
\begin{gathered}
\quad A=\left[\begin{array}{lcll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] \\
\text { (standard matrix for the linear transformation) } T
\end{gathered}
$$

Matrix of Linear Transformation: Example

Example

$$
\left[\begin{array}{ll}
? & ? \\
? & ? \\
? & ?
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-2 x_{2} \\
4 x_{1} \\
3 x_{1}+2 x_{2}
\end{array}\right]
$$

Solution:

$$
\begin{align*}
& {\left[\begin{array}{ll}
? & ? \\
? & ? \\
? & ?
\end{array}\right]=\text { standard matrix of the linear transformation } T} \\
& {\left[\begin{array}{ll}
? & ? \\
? & ? \\
? & ?
\end{array}\right]=\left[\begin{array}{ll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right)
\end{array}\right]=} \tag{fill-in}
\end{align*}
$$

Matrix of Linear Transformation: Example

Example

Find the standard matrix of the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ which rotates a point about the origin through an angle of $\frac{\pi}{4}$ radians (counterclockwise).

$$
T\left(\mathbf{e}_{1}\right)=[\quad]\left(\mathbf{e}_{2}\right)=[
$$

