Math 2331 – Linear Algebra 1.9 The Matrix of a Linear Transformation

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Jiwen He, University of Houston

1.9 The Matrix of a Linear Transformation

- Matrix Transformation: Identity Matrix
- Linear Transformation: Generalized Result
- Matrix of a Linear Transformation
 - Theorem
 - Examples
 - $\bullet\,$ Geometric Linear Transformations of R^2

- 4 同 6 4 日 6 4 日 6

Identity Matrix

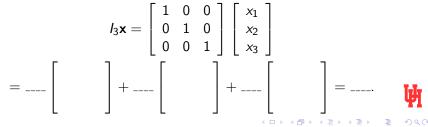
Identity Matrix

 I_n is an $n \times n$ matrix with 1's on the main left to right diagonal and 0's elsewhere. The ith column of I_n is labeled \mathbf{e}_i .

Example

$$l_3 = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Note that



Linear Transformation

Identity Matrix

In general, for **x** in \mathbf{R}^n , $I_n \mathbf{x} = \dots$

Linear Transformation

From Section 1.8, if $T : \mathbf{R}^n \to \mathbf{R}^m$ is a linear transformation, then $T(c\mathbf{u} + d\mathbf{v}) = c\mathbf{T}(\mathbf{u}) + d\mathbf{T}(\mathbf{v})$.

Generalized Result

$$T(c_1\mathbf{v}_1+\cdots+c_p\mathbf{v}_p)=c_1T(\mathbf{v}_1)+\cdots+c_pT(\mathbf{v}_p)$$

Linear Transformation: Example

Example

The columns of
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Suppose T is a linear transformation from \mathbf{R}^2 to \mathbf{R}^3 where

$$T(\mathbf{e}_1) = \begin{bmatrix} 2\\ -3\\ 4 \end{bmatrix} \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} 5\\ 0\\ 1 \end{bmatrix}.$$

Compute $T(\mathbf{x})$ for any $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Solution: A vector \mathbf{x} in \mathbf{R}^2 can be written as

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \dots \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \dots \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \dots \mathbf{e}_1 + \dots \mathbf{e}_2$$

Jiwen He, University of Houston

Linear Transformation: Example (cont.)

Then

$$T (\mathbf{x}) = T (x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2) = \dots T (\mathbf{e}_1) + \dots T (\mathbf{e}_2)$$
$$= \dots \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix} + \dots \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

Note that

So

$$T(\mathbf{x}) = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} \mathbf{x} = A\mathbf{x}$$

To get A, replace the identity matrix $[\mathbf{e}_1 \ \mathbf{e}_2]$ with $[T(\mathbf{e}_2) \ T(\mathbf{e}_2)]$.

Matrix of Linear Transformation: Theorem

Theorem

Let $T : \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

 $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbf{R}^n .

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the identity matrix in \mathbf{R}^n .

$$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

$$\uparrow$$
(standard matrix for the linear transformation) T

Matrix of Linear Transformation: Example

Example

$$\left[\begin{array}{c} ? & ? \\ ? & ? \\ ? & ? \\ ? & ? \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} x_1 - 2x_2 \\ 4x_1 \\ 3x_1 + 2x_2 \end{array}\right]$$

Solution:

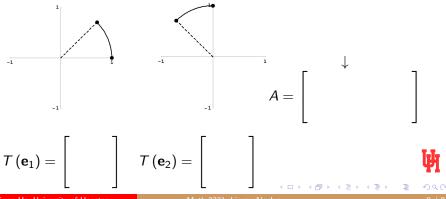
$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} = \text{standard matrix of the linear transformation } T$$
$$\begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} =$$
(fill-in)

표 문 문

Matrix of Linear Transformation: Example

Example

Find the standard matrix of the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which rotates a point about the origin through an angle of $\frac{\pi}{4}$ radians (counterclockwise).



Jiwen He, University of Houston