Math 2331 – Linear Algebra 2.1 Matrix Operations

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

- 4 @ ▶ 4 @ ▶ 4 @ ▶

2.1 Matrix Operations

- Matrix Addition
 - Theorem: Properties of Matrix Sums and Scalar Multiples
 - Zero Matrix
- Matrix Multiplication
 - Definition: Linear Combinations of the Columns
 - Row-Column Rule for Computing AB (alternate method)
 - Theorem: Properties of Matrix Multiplication
 - Identify Matrix
- Matrix Power
- Matrix Transpose
 - Theorem: Properties of Matrix Transpose
 - Symmetric Matrix

Matrix Notation

Matrix Notation

Two ways to denote $m \times n$ matrix A:

In terms of the columns of A:

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$$

2 In terms of the *entries* of A:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

Main diagonal entries:____

Matrix Addition: Theorem

Theorem (Addition)

Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

a.
$$A + B = B + A$$
d. $r(A + B) = rA + rB$ b. $(A + B) + C = A + (B + C)$ e. $(r + s)A = rA + sA$ c. $A + 0 = A$ f. $r(sA) = (rs)A$

Zero Matrix

$$\mathbf{0} = \begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix}$$

э

(日) (周) (三) (三)

Matrix Multiplication

Matrix Multiplication

Multiplying *B* and **x** transforms **x** into the vector $B\mathbf{x}$. In turn, if we multiply *A* and $B\mathbf{x}$, we transform $B\mathbf{x}$ into $A(B\mathbf{x})$. So $A(B\mathbf{x})$ is the composition of two mappings.

Define the product AB so that $A(B\mathbf{x}) = (AB)\mathbf{x}$.

Matrix Multiplication: Definition

Suppose A is $m \times n$ and B is $n \times p$ where

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$

Then

=

$$B\mathbf{x} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_p\mathbf{b}_p$$

and
$$A(B\mathbf{x}) = A(x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_p\mathbf{b}_p)$$

$$= A(x_1\mathbf{b}_1) + A(x_2\mathbf{b}_2) + \dots + A(x_p\mathbf{b}_p)$$

$$x_1A\mathbf{b}_1 + x_2A\mathbf{b}_2 + \dots + x_pA\mathbf{b}_p = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \dots \ A\mathbf{b}_p] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$

Matrix Multiplication: Definition (cont.)

Therefore,

$$A(B\mathbf{x}) = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p]\mathbf{x}.$$

and by defining

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}$$

we have $A(B\mathbf{x}) = (AB)\mathbf{x}$.

Note that $A\mathbf{b}_1$ is a linear combination of the columns of A, $A\mathbf{b}_2$ is a linear combination of the columns of A, *etc*.

Each column of AB is a linear combination of the columns of A using weights from the corresponding columns of B.

Matrix Multiplication: Example

Example

Compute AB where
$$A = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -3 \\ 6 & -7 \end{bmatrix}$.

Solution:

$$A\mathbf{b}_{1} = \begin{bmatrix} 4 & -2\\ 3 & -5\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2\\ 6 \end{bmatrix}, \qquad A\mathbf{b}_{2} = \begin{bmatrix} 4 & -2\\ 3 & -5\\ 0 & 1 \end{bmatrix} \begin{bmatrix} -3\\ -7 \end{bmatrix}$$
$$= \begin{bmatrix} -4\\ -24\\ 6 \end{bmatrix} \qquad = \begin{bmatrix} 2\\ 26\\ -7 \end{bmatrix}$$
$$\implies AB = \begin{bmatrix} -4 & 2\\ -24 & 26\\ 6 & -7 \end{bmatrix}$$

2

.∋...>

Matrix Multiplication: Example

Example

If A is 4×3 and B is 3×2 , then what are the sizes of AB and BA?

Solution:

which is _____

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$.

Jiwen He, University of Houston

Math 2331, Linear Algebra

Row-Column Rule for Computing AB (alternate method)

The definition $AB = [A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_p]$ is good for theoretical work. When *A* and *B* have small sizes, the following method is more efficient when working by hand.

Row-Column Rule for Computing AB

If AB is defined, let $(AB)_{ij}$ denote the entry in the ith row and jth column of AB. Then

$$(AB)_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj},$$

Row-Column Rule for Computing AB: Example

2.1 Matrix Operations

Example

$$A = \begin{bmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix}.$$
 Compute *AB*, if it is defined.

Solution: Since A is 2×3 and B is 3×2 , then AB is defined and AB is _____×____.

$$AB = \begin{bmatrix} \mathbf{2} & \mathbf{3} & \mathbf{6} \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{2} & -3 \\ \mathbf{0} & 1 \\ \mathbf{4} & -7 \end{bmatrix} = \begin{bmatrix} \mathbf{28} & \blacksquare \\ \blacksquare & \blacksquare \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{2} & \mathbf{3} & \mathbf{6} \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{2} & -3 \\ 0 & \mathbf{1} \\ \mathbf{4} & -7 \end{bmatrix} = \begin{bmatrix} \mathbf{28} & -45 \\ \blacksquare & \blacksquare \end{bmatrix}$$

Idition Multiplication Power Trans

Row-Column Rule for Computing AB: Example (cont.)

$$\begin{bmatrix} 2 & 3 & 6 \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{2} & -3 \\ \mathbf{0} & \mathbf{1} \\ \mathbf{4} & -7 \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ \mathbf{2} & \blacksquare \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 6 \\ -\mathbf{1} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} 2 & -\mathbf{3} \\ 0 & \mathbf{1} \\ 4 & -\mathbf{7} \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ 2 & -\mathbf{4} \end{bmatrix}$$

So
$$AB = \begin{bmatrix} 28 & -45 \\ 2 & -4 \end{bmatrix}$$
.

Matrix Multiplication: Theorem

Theorem (Multiplication)

Let A be $m \times n$ and let B and C have sizes for which the indicated sums and products are defined.

- a. A(BC) = (AB)C (associative law of multiplication)
- b. A(B + C) = AB + AC (left distributive law)
- c. (B + C)A = BA + CA (right-distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e. $I_m A = A = A I_n$ (identity for matrix multiplication)

イロト イ押ト イヨト イヨト

Matrix Multiplication: Warnings

WARNINGS

Properties above are analogous to properties of real numbers. But **NOT ALL** real number properties correspond to matrix properties.

- It is not the case that AB always equal BA. (see Example 7, page 98)
- Even if AB = AC, then B may not equal C. (see Exercise 10, page 100)
- 3 It is possible for AB = 0 even if $A \neq 0$ and $B \neq 0$. (see Exercise 12, page 100)

< < p>< < p>

Matrix Power

Powers of A

$$A^k = \underbrace{A \cdots A}_k$$

Jiwen He, University of Houston

(日) (同) (三) (三)

Matrix Transpose

Transpose of A

If A is $m \times n$, the **transpose** of A is the $n \times m$ matrix, denoted by A^{T} , whose columns are formed from the corresponding rows of A.

Matrix Transpose: Example

Example

Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix}$

Compute AB, $(AB)^T$, A^TB^T and B^TA^T .

Solution:

$$AB = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

 $(AB)^T = \int$

(日) (同) (三) (三)

Matrix Transpose: Example (cont.)

2.1 Matrix Operations

$$A^{T}B^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 3 & 10 \\ 2 & 0 & -4 \\ 2 & 1 & 4 \end{bmatrix}$$
$$B^{T}A^{T} = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

E

(日) (同) (三) (三)

Matrix Transpose: Theorem

Theorem (Matrix Transpose)

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

a.
$$(A^T)^T = A$$
 (I.e., the transpose of A^T is A)

$$b. \quad (A+B)^T = A^T + B^T$$

c. For any scalar
$$r$$
, $(rA)^T = rA^T$

d. $(AB)^{T} = B^{T}A^{T}$ (*I.e.* the transpose of a product of matrices equals the product of their transposes in reverse order.)

Example

Prove that $(ABC)^T = \dots$.

Solution: By Theorem,

$$(ABC)^{T} = ((AB) C)^{T} = C^{T} ()^{T}$$
$$= C^{T} () = \dots$$