Math 2331 - Linear Algebra
 2.1 Matrix Operations

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

2.1 Matrix Operations

- Matrix Addition
- Theorem: Properties of Matrix Sums and Scalar Multiples
- Zero Matrix
- Matrix Multiplication
- Definition: Linear Combinations of the Columns
- Row-Column Rule for Computing $A B$ (alternate method)
- Theorem: Properties of Matrix Multiplication
- Identify Matrix
- Matrix Power
- Matrix Transpose
- Theorem: Properties of Matrix Transpose
- Symmetric Matrix

Matrix Notation

Matrix Notation

Two ways to denote $m \times n$ matrix A :
(1) In terms of the columns of A :

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

(2) In terms of the entries of A :

$$
A=\left[\begin{array}{rlrlr}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & & & \vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right]
$$

Main diagonal entries: \qquad

Matrix Addition: Theorem

Theorem (Addition)

Let A, B, and C be matrices of the same size, and let r and s be scalars. Then

$$
\begin{array}{ll}
\text { a. } A+B=B+A & \text { d. } r(A+B)=r A+r B \\
\text { b. }(A+B)+C=A+(B+C) & \text { e. }(r+s) A=r A+s A \\
\text { c. } A+0=A & \text { f. } r(s A)=(r s) A
\end{array}
$$

Zero Matrix

$$
0=\left[\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right]
$$

Matrix Multiplication

Multiplying B and \mathbf{x} transforms \mathbf{x} into the vector $B \mathbf{x}$. In turn, if we multiply A and $B \mathbf{x}$, we transform $B \mathbf{x}$ into $A(B \mathbf{x})$. So $A(B \mathbf{x})$ is the composition of two mappings.

Define the product $A B$ so that $A(B \mathbf{x})=(A B) \mathbf{x}$.

Matrix Multiplication: Definition

Suppose A is $m \times n$ and B is $n \times p$ where

$$
B=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right] \text { and } \mathbf{x}=\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right] .
$$

Then

$$
\begin{gathered}
B \mathbf{x}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p} \\
\text { and } \\
A(B \mathbf{x})=A\left(x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p}\right) \\
=A\left(x_{1} \mathbf{b}_{1}\right)+A\left(x_{2} \mathbf{b}_{2}\right)+\cdots+A\left(x_{p} \mathbf{b}_{p}\right)
\end{gathered}
$$

$$
=x_{1} A \mathbf{b}_{1}+x_{2} A \mathbf{b}_{2}+\cdots+x_{p} A \mathbf{b}_{p}=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]
$$

Matrix Multiplication: Definition (cont.)

Therefore,

$$
A(B \mathbf{x})=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right] \mathbf{x}
$$

and by defining

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

we have $A(B \mathbf{x})=(A B) \mathbf{x}$.
Note that $A \mathbf{b}_{1}$ is a linear combination of the columns of $A, A \mathbf{b}_{2}$ is a linear combination of the columns of A, etc.

Each column of $A B$ is a linear combination of the columns of A using weights from the corresponding columns of B.

Example

Compute $A B$ where $A=\left[\begin{array}{rr}4 & -2 \\ 3 & -5 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & -3 \\ 6 & -7\end{array}\right]$.
Solution:

$$
\begin{array}{cc}
A \mathbf{b}_{1}=\left[\begin{array}{rr}
4 & -2 \\
3 & -5 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right], & A \mathbf{b}_{2}=\left[\begin{array}{rr}
4 & -2 \\
3 & -5 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-3 \\
-7
\end{array}\right] \\
=\left[\begin{array}{c}
-4 \\
-24 \\
6
\end{array}\right] & =\left[\begin{array}{c}
2 \\
26 \\
-7
\end{array}\right] \\
\Longrightarrow A B=\left[\begin{array}{rr}
-4 & 2 \\
-24 & 26 \\
6 & -7
\end{array}\right]
\end{array}
$$

Matrix Multiplication: Example

Example

If A is 4×3 and B is 3×2, then what are the sizes of $A B$ and $B A$?
Solution:

$$
\begin{aligned}
& A B=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{ll}
* & * \\
* & * \\
* & *
\end{array}\right]=[] \\
& \text { BA would be }\left[\begin{array}{ll}
* & * \\
* & * \\
* & *
\end{array}\right]\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]
\end{aligned}
$$

which is

$$
\text { If } A \text { is } m \times n \text { and } B \text { is } n \times p \text {, then } A B \text { is } m \times p \text {. }
$$

Row-Column Rule for Computing $A B$ (alternate method)

The definition $A B=\left[\begin{array}{llll}A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}\end{array}\right]$ is good for theoretical work. When A and B have small sizes, the following method is more efficient when working by hand.

Row-Column Rule for Computing $A B$

If $A B$ is defined, let $(A B)_{i j}$ denote the entry in the ith row and jth column of $A B$. Then

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j},
$$

i.e.,
$\left[\begin{array}{llll} & & & \\ a_{i 1} & a_{i 2} & \cdots & a_{i n} \\ & & & \end{array}\right][$ $b_{1 j}$
$b_{2 j}$
\vdots
$b_{n j}$

Row-Column Rule for Computing $A B$: Example

Example

$A=\left[\begin{array}{rrr}2 & 3 & 6 \\ -1 & 0 & 1\end{array}\right], B=\left[\begin{array}{rr}2 & -3 \\ 0 & 1 \\ 4 & -7\end{array}\right]$. Compute $A B$, if it is defined.

Solution: Since A is 2×3 and B is 3×2, then $A B$ is defined and $A B$ is

$$
\begin{aligned}
& A B=\left[\begin{array}{rrr}
\mathbf{2} & \mathbf{3} & \mathbf{6} \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & -3 \\
0 & 1 \\
\mathbf{4} & -7
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{2 8} & \square \\
\square & \square
\end{array}\right] \\
& {\left[\begin{array}{rrr}
\mathbf{2} & \mathbf{3} & \mathbf{6} \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & -\mathbf{3} \\
0 & \mathbf{1} \\
4 & -\mathbf{7}
\end{array}\right]=\left[\begin{array}{rr}
28 & -\mathbf{4 5} \\
\square & \square
\end{array}\right]}
\end{aligned}
$$

Row-Column Rule for Computing AB: Example (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
2 & 3 & 6 \\
-\mathbf{1} & \mathbf{0} & \mathbf{1}
\end{array}\right]\left[\begin{array}{rr}
\mathbf{2} & -3 \\
\mathbf{0} & 1 \\
\mathbf{4} & -7
\end{array}\right]=\left[\begin{array}{rr}
28 & -45 \\
\mathbf{2} & \mathbf{\square}
\end{array}\right]} \\
& {\left[\begin{array}{rrr}
2 & 3 & 6 \\
-\mathbf{1} & \mathbf{0} & \mathbf{1}
\end{array}\right]\left[\begin{array}{rr}
2 & -\mathbf{3} \\
0 & \mathbf{1} \\
4 & -\mathbf{7}
\end{array}\right]=\left[\begin{array}{rr}
28 & -45 \\
2 & -\mathbf{4}
\end{array}\right]} \\
& \text { So } A B=\left[\begin{array}{cc}
28 & -45 \\
2 & -4
\end{array}\right] .
\end{aligned}
$$

Matrix Multiplication: Theorem

Theorem (Multiplication)

Let A be $m \times n$ and let B and C have sizes for which the indicated sums and products are defined.

$$
\begin{array}{lll}
\text { a. } & A(B C)=(A B) C & \text { (associative law of mult } \\
\text { b. } & A(B+C)=A B+A C & \text { (left-distributive law) } \\
\text { c. } & (B+C) A=B A+C A & \text { (right-distributive law) } \\
\text { d. } & r(A B)=(r A) B=A(r B) & \\
& \text { for any scalar r }
\end{array}
$$

e. $\quad I_{m} A=A=A I_{n}$
(identity for matrix multiplication)

Matrix Multiplication: Warnings

WARNINGS

Properties above are analogous to properties of real numbers. But NOT ALL real number properties correspond to matrix properties.
(1) It is not the case that $A B$ always equal $B A$. (see Example 7, page 98)
(2) Even if $A B=A C$, then B may not equal C. (see Exercise 10, page 100)
(3) It is possible for $A B=0$ even if $A \neq 0$ and $B \neq 0$. (see Exercise 12, page 100)

Matrix Power

Powers of A

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

Example

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]^{3}=\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]} \\
& =[\quad]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
21 & 8
\end{array}\right]
\end{aligned}
$$

Matrix Transpose

Transpose of A

If A is $m \times n$, the transpose of A is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of A.

Example

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 8 \\
7 & 6 & 5 & 4 & 3
\end{array}\right] \quad \Longrightarrow \quad A^{T}=\left[\begin{array}{lll}
1 & 6 & 7 \\
2 & 7 & 6 \\
3 & 8 & 5 \\
4 & 9 & 4 \\
5 & 8 & 3
\end{array}\right]
$$

Matrix Transpose: Example

Example

Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 0 & 1\end{array}\right], B=\left[\begin{array}{rr}1 & 2 \\ 0 & 1 \\ -2 & 4\end{array}\right]$.
Compute $A B,(A B)^{T}, A^{T} B^{T}$ and $B^{T} A^{T}$.

Solution:

$$
\begin{gathered}
A B=\left[\begin{array}{lll}
1 & 2 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
0 & 1 \\
-2 & 4
\end{array}\right]=[\\
(A B)^{T}=[
\end{gathered}
$$

Matrix Transpose: Example (cont.)

$$
\begin{aligned}
& A^{T} B^{T}=\left[\begin{array}{ll}
1 & 3 \\
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
7 & 3 & 10 \\
2 & 0 & -4 \\
2 & 1 & 4
\end{array}\right] \\
& B^{T} A^{T}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 0 \\
0 & 1
\end{array}\right]=[
\end{aligned}
$$

Matrix Transpose: Theorem

Theorem (Matrix Transpose)

Let A and B denote matrices whose sizes are appropriate for the following sums and products.
a. $\left(A^{T}\right)^{T}=A$ (I.e., the transpose of A^{T} is A)
b. $(A+B)^{T}=A^{T}+B^{T}$
c. For any scalar $r,(r A)^{T}=r A^{T}$
d. $(A B)^{T}=B^{T} A^{T}$ (I.e. the transpose of a product of matrices equals the product of their transposes in reverse order.)

Example

Prove that $(A B C)^{T}=$
Solution: By Theorem,

$$
\begin{aligned}
(A B C)^{T} & =((A B) C)^{T}=C^{T}(\quad)^{T} \\
& =C^{T}(\quad)=
\end{aligned}
$$

