Math 2331 - Linear Algebra

2.2 The Inverse of a Matrix

Key Exercises 11-24, 35

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

2.2 The Inverse of a Matrix Key Exercises 11-24, 35

- The proof of Theorem 5 is important; students need to know the ways that both uniqueness and existence are proved.
- Elementary matrices are also used in Section 2.5 and in Section 3.2
- The algorithm for finding A^{-1} is popular because it is so familar and leads to easy exam questions.
- Key Exercises: 11-24, 35
- Exercise 12 is referenced in Section 2.3 after the proof of Theorem 8
- Exercise 15 is useful and indicates how matrix products involving inverses are actually computed in practice. It will be used in Sections 4.7 and 5.4
- Exercises 23 and 24 are cited in the proof of Theorem 8.

11. Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Show that the equation $A X=B$ has a unique solution $A^{-1} B$.
12. Use matrix algebra to show that if A is invertible and D satisfies $A D=I$, then $D=A^{-1}$.
13. Suppose $A B=A C$, where B and C are $n \times p$ matrices and A is invertible. Show that $B=C$. Is this true, in general, when A is not invertible?
14. Suppose $(B-C) D=0$, where B and C are $m \times n$ matrices and D is invertible. Show that $B=C$.
15. Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Explain why $A^{-1} B$ can be computed by row reduction:

If $\left[\begin{array}{cc}A & B\end{array}\right] \sim \cdots \sim\left[\begin{array}{ll}I & X\end{array}\right]$, then $X=A^{-1} B$.
If A is larger than 2×2, then row reduction of $\left[\begin{array}{ll}A & B\end{array}\right]$ is much faster than computing both A^{-1} and $A^{-1} B$.
16. Suppose A and B are $n \times n$ matrices, B is invertible, and $A B$ is invertible. Show that A is invertible. [Hint: Let $C=A B$, and solve this equation for A.]
17. Suppose A, B, and C are invertible $n \times n$ matrices. Show that $A B C$ is also invertible by producing a matrix D such that $(A B C) D=I$ and $D(A B C)=I$.
18. Solve the equation $A B=B C$ for A, assuming that A, B, and C are square and B is invertible.
19. If A, B, and C are $n \times n$ invertible matrices, does the equation $C^{-1}(A+X) B^{-1}=I_{n}$ have a solution, X ? If so, find it.
20. Suppose A, B, and X are $n \times n$ matrices with A, X, and $A-A X$ invertible, and suppose

$$
\begin{equation*}
(A-A X)^{-1}=X^{-1} B \tag{3}
\end{equation*}
$$

a. Explain why B is invertible.
b. Solve equation (3) for X. If a matrix needs to be inverted, explain why that matrix is invertible.
21. Explain why the columns of an $n \times n$ matrix A are linearly independent when A is invertible.
22. Explain why the columns of an $n \times n$ matrix A span \mathbb{R}^{n} when A is invertible. [Hint: Review Theorem 4 in Section 1.4.]
23. Suppose A is $n \times n$ and the equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution. Explain why A has n pivot columns and A is row equivalent to I_{n}. By Theorem 7, this shows that A must be invertible. (This exercise and Exercise 24 will be cited in Section 2.3.)
24. Suppose A is $n \times n$ and the equation $A \mathbf{x}=\mathbf{b}$ has a solution for each \mathbf{b} in \mathbb{R}^{n}. Explain why A must be invertible. [Hint: Is A row equivalent to I_{n} ?]
35. Let $A=\left[\begin{array}{rrr}-1 & -7 & -3 \\ 2 & 15 & 6 \\ 1 & 3 & 2\end{array}\right]$. Find the third column of A^{-1} without computing the other columns.

