Math 2331 – Linear Algebra 2.2 The Inverse of a Matrix Key Exercises 11–24, 35

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

</₽> < ∃ > <

Jiwen He, University of Houston

2.2 The Inverse of a Matrix Key Exercises 11–24, 35

- The proof of Theorem 5 is important; students need to know the ways that both uniqueness and existence are proved.
- Elementary matrices are also used in Section 2.5 and in Section 3.2
- The algorithm for finding A^{-1} is popular because it is so familar and leads to easy exam questions.
- Key Exercises: 11-24, 35
 - Exercise 12 is referenced in Section 2.3 after the proof of Theorem 8
 - Exercise 15 is useful and indicates how matrix products involving inverses are actually computed in practice. It will be used in Sections 4.7 and 5.4
 - Exercises 23 and 24 are cited in the proof of Theorem 8.

・ロト ・聞ト ・ ヨト ・ ヨト

11. Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Show that the equation AX = B has a unique solution $A^{-1}B$.

12. Use matrix algebra to show that if A is invertible and D satisfies AD = I, then $D = A^{-1}$.

æ

13. Suppose AB = AC, where B and C are $n \times p$ matrices and A is invertible. Show that B = C. Is this true, in general, when A is not invertible?

14. Suppose (B - C)D = 0, where B and C are $m \times n$ matrices and D is invertible. Show that B = C.

3

15. Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Explain why $A^{-1}B$ can be computed by row reduction:

If $\begin{bmatrix} A & B \end{bmatrix} \sim \cdots \sim \begin{bmatrix} I & X \end{bmatrix}$, then $X = A^{-1}B$.

If A is larger than 2×2 , then row reduction of $\begin{bmatrix} A & B \end{bmatrix}$ is much faster than computing both A^{-1} and $A^{-1}B$.

16. Suppose A and B are $n \times n$ matrices, B is invertible, and AB is invertible. Show that A is invertible. [*Hint:* Let C = AB, and solve this equation for A.]

17. Suppose A, B, and C are invertible $n \times n$ matrices. Show that ABC is also invertible by producing a matrix D such that (ABC)D = I and D(ABC) = I.

18. Solve the equation AB = BC for A, assuming that A, B, and C are square and B is invertible.

19. If A, B, and C are $n \times n$ invertible matrices, does the equation $C^{-1}(A + X)B^{-1} = I_n$ have a solution, X? If so, find it.

20. Suppose A, B, and X are $n \times n$ matrices with A, X, and A - AX invertible, and suppose

$$(A - AX)^{-1} = X^{-1}B (3)$$

- a. Explain why *B* is invertible.
- b. Solve equation (3) for X. If a matrix needs to be inverted, explain why that matrix is invertible.

- 4 @ ▶ 4 @ ▶ 4 @ ▶

21. Explain why the columns of an $n \times n$ matrix A are linearly independent when A is invertible.

22. Explain why the columns of an $n \times n$ matrix A span \mathbb{R}^n when A is invertible. [*Hint:* Review Theorem 4 in Section 1.4.]

イロト イ押ト イヨト イヨト

23. Suppose *A* is $n \times n$ and the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. Explain why *A* has *n* pivot columns and *A* is row equivalent to I_n . By Theorem 7, this shows that *A* must be invertible. (This exercise and Exercise 24 will be cited in Section 2.3.)

• • • • • • • • •

24. Suppose A is n × n and the equation Ax = b has a solution for each b in ℝⁿ. Explain why A must be invertible. [*Hint*: Is A row equivalent to I_n?]

35. Let
$$A = \begin{bmatrix} -1 & -7 & -3 \\ 2 & 15 & 6 \\ 1 & 3 & 2 \end{bmatrix}$$
. Find the third column of A^{-1}

without computing the other columns.

æ

イロト イヨト イヨト イヨト