Math 2331 – Linear Algebra

4.2 Null Spaces, Column Spaces, & Linear Transformations

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331
4.2 Null Spaces, Column Spaces, & Linear Transformations

- **Null Spaces**
 - Definition
 - Theorem
 - Examples

- **Column Spaces**
 - Definition
 - Theorem
 - Examples

- The Contrast Between Nul A and Col A

- Null Spaces & Column Spaces: Review

- Null Spaces & Column Spaces: Examples

- Kernal and Range of a Linear Transformation
The null space of an \(m \times n \) matrix \(A \), written as Nul \(A \), is the set of all solutions to the homogeneous equation \(Ax = 0 \).

\[
\text{Nul} \ A = \{ \mathbf{x} : \mathbf{x} \text{ is in } \mathbb{R}^n \text{ and } A\mathbf{x} = 0 \} \quad \text{(set notation)}
\]

Theorem (2)

The null space of an \(m \times n \) matrix \(A \) is a subspace of \(\mathbb{R}^n \). Equivalently, the set of all solutions to a system \(Ax = 0 \) of \(m \) homogeneous linear equations in \(n \) unknowns is a subspace of \(\mathbb{R}^n \).

Proof: Nul \(A \) is a subset of \(\mathbb{R}^n \) since \(A \) has \(n \) columns. Must verify properties a, b and c of the definition of a subspace.

Property (a) Show that \(\mathbf{0} \) is in Nul \(A \). Since ________, \(\mathbf{0} \) is in ________.
Null Space (cont.)

Property (b) If \(u \) and \(v \) are in Nul \(A \), show that \(u + v \) is in Nul \(A \).
Since \(u \) and \(v \) are in Nul \(A \),

\[
\text{________ and ________}.
\]

Therefore

\[
A (u + v) = \text{________ } + \text{________ } = \text{________ } + \text{________ } = \text{______}_.
\]

Property (c) If \(u \) is in Nul \(A \) and \(c \) is a scalar, show that \(cu \) in Nul \(A \):

\[
A (cu) = \text{___}A (u) = c0 = 0.
\]

Since properties a, b and c hold, \(A \) is a subspace of \(\mathbb{R}^n \).
Solving \(Ax = 0 \) yields an *explicit description* of Nul \(A \).
Example

Find an explicit description of Nul A where

$$A = \begin{bmatrix} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{bmatrix}$$

Solution: Row reduce augmented matrix corresponding to $Ax = 0$:

$$\begin{bmatrix} 3 & 6 & 6 & 3 & 9 & 0 \\ 6 & 12 & 13 & 0 & 3 & 0 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 2 & 0 & 13 & 33 & 0 \\ 0 & 0 & 1 & -6 & -15 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix}$$
Null Space: Example (cont.)

\[A = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -13 \\ 0 \\ 6 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -33 \\ 0 \\ 15 \\ 1 \end{bmatrix} \]

Then

\[\text{Nul } A = \text{span}\{u, v, w\} \]
Observations:
1. Spanning set of Nul A, found using the method in the last example, is automatically linearly independent:

$$
\begin{bmatrix}
 -2 \\
 1 \\
 0 \\
 0
\end{bmatrix} c_1 +
\begin{bmatrix}
 -13 \\
 0 \\
 6 \\
 1
\end{bmatrix} c_2 +
\begin{bmatrix}
 -33 \\
 0 \\
 15 \\
 1
\end{bmatrix} c_3 =
\begin{bmatrix}
 0 \\
 0 \\
 0 \\
 0
\end{bmatrix}
\Rightarrow
\begin{align*}
 c_1 &= \text{_____} \\
 c_2 &= \text{_____} \\
 c_3 &= \text{_____}
\end{align*}
$$

2. If Nul $A \neq \{0\}$, the number of vectors in the spanning set for Nul A equals the number of free variables in $Ax = 0$.
Column Space

The **column space** of an $m \times n$ matrix A (Col A) is the set of all linear combinations of the columns of A.

If $A = [a_1 \ldots a_n]$, then

$$\text{Col } A = \text{Span}\{a_1, \ldots, a_n\}$$

Theorem (3)

*The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m.***

Why? (Theorem 1, page 194)

Recall that if $Ax = b$, then b is a linear combination of the columns of A. Therefore

$$\text{Col } A = \{b : b = Ax \text{ for some } x \text{ in } \mathbb{R}^n\}$$
Column Space: Example

Example

Find a matrix A such that $W = \text{Col } A$ where

$$W = \left\{ \begin{bmatrix} x - 2y \\ 3y \\ x + y \end{bmatrix} : x, y \text{ in } \mathbb{R} \right\}.$$

Solution:

$$\begin{bmatrix} x - 2y \\ 3y \\ x + y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + y \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
Therefore

\[A = \begin{bmatrix} \end{bmatrix}. \]

By Theorem 4 (Chapter 1),

The column space of an \(m \times n \) matrix \(A \) is all of \(\mathbb{R}^m \) if and only if the equation \(Ax = b \) has a solution for each \(b \) in \(\mathbb{R}^m \).
The Contrast Between Nul A and Col A

Example

Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \\ 0 & 0 & 1 \end{bmatrix}$.

(a) The column space of A is a subspace of \mathbb{R}^k where $k =\ldots$.

(b) The null space of A is a subspace of \mathbb{R}^k where $k =\ldots$.

(c) Find a nonzero vector in Col A. (There are infinitely many possibilities.)

$$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\ 6 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 7 \\ 10 \\ 1 \end{bmatrix} = \begin{bmatrix} \ldots \end{bmatrix}$$
4.2 Null Spaces, Column Spaces, & Linear Transformations

The Contrast Between Nul A and Col A (cont.)

Example (cont.)

(d) Find a nonzero vector in Nul A. Solve $A\mathbf{x} = \mathbf{0}$ and pick one solution.

\[
\begin{bmatrix}
1 & 2 & 3 & 0 \\
2 & 4 & 7 & 0 \\
3 & 6 & 10 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

row reduces to

\[
\begin{bmatrix}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

$x_1 = -2x_2$

x_2 is free \implies let $x_2 = ___ \implies \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$

Contrast Between Nul A and Col A where A is $m \times n$ (see page 204)
A \textbf{subspace} of a vector space V is a subset H of V that has three properties:

a. The zero vector of V is in H.

b. For each u and v in H, $u + v$ is in H. (In this case we say H is closed under vector addition.)

c. For each u in H and each scalar c, cu is in H. (In this case we say H is closed under scalar multiplication.)

If the subset H satisfies these three properties, then H itself is a vector space.
Null Spaces & Column Spaces: Review (cont.)

Theorem (1, 2 and 3 in Sections 4.1 & 4.2)

- If v_1, \ldots, v_p are in a vector space V, then $\text{Span}\{v_1, \ldots, v_p\}$ is a subspace of V.

- The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n.

- The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m.
Null Spaces & Column Spaces: Examples

Example

Determine whether each of the following sets is a vector space or provide a counterexample.

(a) $H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x - y = 4 \right\}$

Solution: Since

\[\begin{bmatrix} \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} \ldots \\ \ldots \end{bmatrix} \]

is not in H, H is not a vector space.
Example

(b) \(V = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \begin{align*} x - y &= 0 \\ y + z &= 0 \end{align*} \} \)

Solution: Rewrite

\[x - y = 0 \]
\[y + z = 0 \]

as

\[\begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

So \(V = \text{Nul } A \) where \(A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \). Since \(\text{Nul } A \) is a subspace of \(\mathbb{R}^2 \), \(V \) is a vector space.
Example

(c) \(S = \left\{ \begin{bmatrix} x + y \\ 2x - 3y \\ 3y \end{bmatrix} : x, y, z \text{ are real} \right\} \)

One Solution: Since

\[
\begin{bmatrix} x + y \\ 2x - 3y \\ 3y \end{bmatrix} = x \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + y \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix},
\]

\[
S = \text{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix} \right\};
\]

therefore \(S \) is a vector space by Theorem 1.
Another Solution: Since

\[
\begin{bmatrix}
 x + y \\
 2x - 3y \\
 3y
\end{bmatrix}
= x \begin{bmatrix}
 1 \\
 2 \\
 0
\end{bmatrix}
+ y \begin{bmatrix}
 1 \\
 -3 \\
 3
\end{bmatrix},
\]

\[S = \text{Col } A \quad \text{where } A = \begin{bmatrix}
 1 & 1 \\
 2 & -3 \\
 0 & 3
\end{bmatrix};\]

therefore \(S\) is a vector space, since a column space is a vector space.
Linear Transformation

A **linear transformation** T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in V;
2. $T(c\mathbf{u}) = cT(\mathbf{u})$ for all \mathbf{u} in V and all scalars c.

Kernal and Range

The **kernel** (or **null space**) of T is the set of all vectors \mathbf{u} in V such that $T(\mathbf{u}) = \mathbf{0}$. The **range** of T is the set of all vectors in W of the form $T(\mathbf{u})$ where \mathbf{u} is in V.

So if $T(\mathbf{x}) = A\mathbf{x}$, $\text{col } A = \text{range of } T$.