Math 2331 – Linear Algebra 4.3 Linearly Independent Sets; Bases

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

< /₽ > < E > <

4.3 Linearly Independent Sets; Bases

- Linearly Independent Sets
 - Definition
 - Facts
 - Examples
- A Basis Set: Definition
- A Basis Set: Examples
 - Nul A: Examples and Theorem
 - Col A: Examples and Theorem
- The Spanning Set Theorem

3 K K 3 K

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Linearly Independent Sets

Linearly Independent Sets

 A set of vectors {v₁, v₂,..., v_p} in a vector space V is said to be linearly independent if the vector equation

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}$$

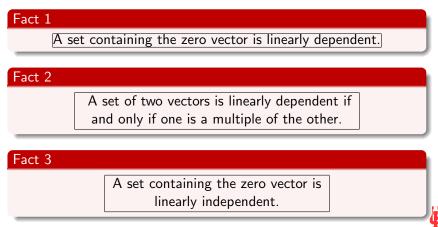
has only the trivial solution $c_1 = 0, \ldots, c_p = 0$.

 The set {v₁, v₂,..., v_p} is said to be linearly dependent if there exists weights c₁,..., c_p,not all 0, such that

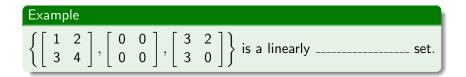
$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}.$$

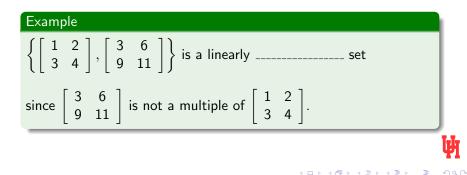
Linearly Independent Sets: Facts

The following results from Section 1.7 are still true for more general vectors spaces.



Linearly Independent Sets: Examples





・ロト ・聞 ト ・ ヨト ・ ヨト …

Linearly Independent Sets: Examples

Theorem (4)

An indexed set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ of two or more vectors, with $\mathbf{v}_1 \neq \mathbf{0}$, is linearly dependent if and only if some vector \mathbf{v}_j (j > 1) is a linear combination of the preceding vectors $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Example

Let { \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 } be a set of vectors in \mathbf{P}_2 where $\mathbf{p}_1(t) = t$, $\mathbf{p}_2(t) = t^2$, and $\mathbf{p}_3(t) = 4t + 2t^2$. Is this a linearly dependent set?

Solution: Since $p_3 = ___p_1 + ___p_2$, { p_1, p_2, p_3 } is

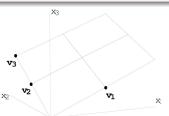
a linearly _____ set.

A Basis Set

Let H be the plane illustrated below. Which of the following are valid descriptions of H?

(a)
$$H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$$
 (b) $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_3\}$

(c) $H = \text{Span}\{\mathbf{v}_2, \mathbf{v}_3\}$ (d) $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$



A basis set is an "efficient" spanning set containing no unnecessary vectors. In this case, we would consider the linearly independent sets $\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\{\mathbf{v}_1, \mathbf{v}_3\}$ to both be examples of basis sets or bases (plural for basis) for H.

A Basis Set: Definition and Examples

A Basis Set

Let H be a subspace of a vector space V. An indexed set of vectors $\beta = {\bf b}_1, \dots, {\bf b}_p$ in V is a basis for H if

- i. β is a linearly independent set, and
- ii. $H = \operatorname{Span}\{\mathbf{b}_1, \dots, \mathbf{b}_p\}.$

Example

Let
$$\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Show that $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis for \mathbf{R}^3 . The set $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is called a standard basis for \mathbf{R}^3 .

Solutions: (Review the IMT, page 112) Let $A = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

A Basis Set: Definition and Examples

Since A has 3 pivots,

- the columns of A are linearly _____ by the IMT,
- and the columns of A _____ by IMT;
- therefore, $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is a basis for \mathbf{R}^3 .

Example

Let $S = \{1, t, t^2, \dots, t^n\}$. Show that S is a basis for P_n .

Solution: Any polynomial in \mathbf{P}_n is in span of *S*. To show that *S* is linearly independent, assume

$$c_0 \cdot 1 + c_1 \cdot t + \cdots + c_n \cdot t^n = \mathbf{0}.$$

Then $c_0 = c_1 = \cdots = c_n = 0$. Hence S is a basis for \mathbf{P}_n .

<ロ> (四) (四) (三) (三) (三) (三)

A Basis Set: Example

Example

Let
$$\mathbf{v}_{1} = \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}$$
, $\mathbf{v}_{2} = \begin{bmatrix} 0\\ 1\\ 1 \end{bmatrix}$, $\mathbf{v}_{3} = \begin{bmatrix} 1\\ 0\\ 3 \end{bmatrix}$.
Is $\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}$ a basis for \mathbf{R}^{3} ?
Solution: Let $A = [\mathbf{v}_{1} \ \mathbf{v}_{2} \ \mathbf{v}_{3}] = \begin{bmatrix} 1 & 0 & 1\\ 2 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix}$. By row reduction,
 $\begin{bmatrix} 1 & 0 & 1\\ 2 & 1 & 0\\ 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & -2\\ 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & -2\\ 0 & 0 & 5 \end{bmatrix}$

and since there are 3 pivots, the columns of *A* are linearly independent and they span \mathbb{R}^3 by the IMT. Therefore $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a **basis** for \mathbb{R}^3 .

A Basis Set: Example

Example

Explain why each of the following sets is **not** a basis for \mathbb{R}^3 .

$$(a) \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\-3\\7 \end{bmatrix} \right\}$$

- 4 @ ▶ 4 @ ▶ 4 @ ▶

Bases for Nul A: Example

Example

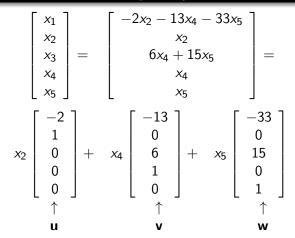
Find a basis for Nul A where

$$A = \left[\begin{array}{rrrr} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{array} \right]$$

Solution: Row reduce $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$:

$$\begin{bmatrix} 1 & 2 & 0 & 13 & 33 & 0 \\ 0 & 0 & 1 & -6 & -15 & 0 \end{bmatrix} \implies \begin{array}{c} x_1 = -2x_2 - 13x_4 - 33x_5 \\ x_3 = 6x_4 + 15x_5 \\ x_2, x_4 \text{ and } x_5 \text{ are free} \end{array}$$

Bases for Nul A: Example (cont.)



Therefore $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a spanning set for Nul *A*. In the last section we observed that this set is linearly independent. Therefore $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for Nul *A*. The technique used here always provides a linearly independent set.

Jiwen He, University of Houston

Math 2331, Linear Algebra

The Spanning Set Theorem

A basis can be constructed from a spanning set of vectors by discarding vectors which are linear combinations of preceding vectors in the indexed set.

Example

Suppose
$$\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$.

Solution: If x is in Span{ v_1, v_2, v_3 }, then

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 (\dots \mathbf{v}_1 + \dots \mathbf{v}_2)$$

$$=$$
 \dots \mathbf{v}_1 $+$ \dots \mathbf{v}_2

Therefore,

$$\mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}=\mathsf{Span}\{\mathbf{v}_1,\mathbf{v}_2\}.$$

The Spanning Set Theorem

Theorem (5 The Spanning Set Theorem)

Let

$$S = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$$

be a set in V and let

$$H = \operatorname{Span} \left\{ \mathbf{v}_1, \ldots, \mathbf{v}_p \right\}.$$

- a. If one of the vectors in S say \mathbf{v}_k is a linear combination of the remaining vectors in S, then the set formed from S by removing \mathbf{v}_k still spans H.
- b. If $H \neq \{\mathbf{0}\}$, some subset of S is a basis for H.

< 一型

Bases for Col A: Examples

Example

Find a basis for Col A, where

$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{a}_4] = \begin{bmatrix} 1 & 2 & 0 & 4 \\ 2 & 4 & -1 & 3 \\ 3 & 6 & 2 & 22 \\ 4 & 8 & 0 & 16 \end{bmatrix}.$$

Solution: Row reduce:

$$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 & \mathbf{b}_4 \end{bmatrix}$$

2

∃ >

Bases for Col A: Examples (cont.)

Note that

 $\mathbf{b}_2 = ___\mathbf{b}_1 \qquad \text{and} \qquad \mathbf{a}_2 = ___\mathbf{a}_1$

 $\mathbf{b}_4 = 4\mathbf{b}_1 + 5\mathbf{b}_3 \qquad \text{and} \qquad \mathbf{a}_4 = 4\mathbf{a}_1 + 5\mathbf{a}_3$

 \mathbf{b}_1 and \mathbf{b}_3 are not multiples of each other

 \mathbf{a}_1 and \mathbf{a}_3 are not multiples of each other

Elementary row operations on a matrix do not affect the linear dependence relations among the columns of the matrix.

Therefore

$$\operatorname{Span}\left\{a_{1},\,a_{2},\,a_{3},\,a_{4}\right\}=\operatorname{Span}\left\{a_{1},\,a_{3}\right\}$$

and $\{a_1, a_3\}$ is a basis for Col A.

Bases for Col A: Theorem and Example

Theorem (6)

The pivot columns of a matrix A form a basis for Col A.

Example

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\-3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2\\-4\\6 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 3\\6\\9 \end{bmatrix}$. Find a basis for Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

Solution: Let

$$A = \left[\begin{array}{rrrr} 1 & -2 & 3 \\ 2 & -4 & 6 \\ -3 & 6 & 9 \end{array} \right]$$

and note that

$$\operatorname{Col} A = \operatorname{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\}.$$

Jiwen He, University of Houston

・ 何 ト ・ ヨ ト ・ ヨ ト

inearly Independent Sets A Basis Set Nul A Col A

Bases for Col A: Theorem and Example (cont.)

By row reduction,
$$A \sim \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. Therefore a basis for Span{ $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ } is $\left\{ \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} \right\}$.

A B A A B A

< 🗗 🕨

Bases for Nul A & Col A: Review

Review

- 1. To find a basis for Nul A, use elementary row operations to transform $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ to an equivalent reduced row echelon form $\begin{bmatrix} B & \mathbf{0} \end{bmatrix}$. Use the reduced row echelon form to find parametric form of the general solution to $A\mathbf{x} = \mathbf{0}$. The vectors found in this parametric form of the general solution form a basis for Nul A.
- A basis for Col A is formed from the pivot columns of A.
 Warning: Use the pivot columns of A, not the pivot columns of B, where B is in reduced echelon form and is row equivalent to A.