Math 2331 – Linear Algebra 4.4 Coordinate Systems

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

Jiwen He, University of Houston

1 / 16

4.4 Coordinate Systems

- Coordinate Systems
 - Definition: Coordinates and Coordinate Vector
 - Examples
- Change-of-Coordinates Matrix
 - Definition
 - Examples
- Parallel Worlds of \mathbf{R}^3 and \mathbf{P}_2
- Isomorphic

B ▶ < B ▶

Coordinate Systems

In general, people are more comfortable working with the vector space \mathbf{R}^n and its subspaces than with other types of vectors spaces and subspaces. The goal here is to *impose* coordinate systems on vector spaces, even if they are not in \mathbf{R}^n .

Theorem (7)

Let $\beta = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ be a basis for a vector space V. Then for each **x** in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n.$$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Coordinate Systems: Definition

Coordinates

Suppose $\beta = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ is a basis for a vector space V and x is in V. The coordinates of x relative to the basis β (or the β coordinates of x) are the weights c_1, \dots, c_n such that

$$\mathbf{x}=c_1\mathbf{b}_1+\cdots+c_n\mathbf{b}_n.$$

Coordinate Vector

In this case, the vector in \mathbf{R}^n

$$[\mathbf{x}]_{\beta} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is called the coordinate vector of x (relative to β), or the β -coordinate vector of x.

Jiwen He, University of Houston

Coordinate Systems: Example

Example

Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$ and let $E = \{\mathbf{e}_1, \mathbf{e}_2\}$ where $\mathbf{e}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$.

Solution:

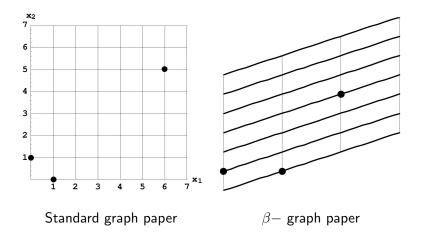
If
$$[\mathbf{x}]_{\beta} = \begin{bmatrix} 2\\3 \end{bmatrix}$$
, then $\mathbf{x} = \dots \begin{bmatrix} 3\\1 \end{bmatrix} + \dots \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.
If $[\mathbf{x}]_{E} = \begin{bmatrix} 6\\5 \end{bmatrix}$, then $\mathbf{x} = \dots \begin{bmatrix} 1\\0 \end{bmatrix} + \dots \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

æ

- 4 回 ト - 4 回 ト

H

Coordinate Systems: Example (cont.)



・ 何 ト ・ ヨ ト ・ ヨ ト

Change-of-Coordinates Matrix

From the last example,

$$\begin{bmatrix} 6\\5 \end{bmatrix} = \begin{bmatrix} 3 & 0\\1 & 1 \end{bmatrix} \begin{bmatrix} 2\\3 \end{bmatrix}.$$

For a basis $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, let
 $P_\beta = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n] \quad \text{and} \quad [\mathbf{x}]_\beta = \begin{bmatrix} c_1\\c_2\\\vdots\\c_n \end{bmatrix}$

Then

$$\mathbf{x} = P_{\beta} \left[\mathbf{x} \right]_{\beta}$$
.

We call P_{β} the **change-of-coordinates matrix** from β to the standard basis in **R**^{*n*}. Then

$$[\mathbf{x}]_{\beta} = P_{\beta}^{-1}\mathbf{x}$$

and therefore P_{β}^{-1} is a **change-of-coordinates matrix** from the standard basis in \mathbb{R}^n to the basis β .

Change-of-Coordinates Matrix: Example

Example

Let
$$\mathbf{b}_1 = \begin{bmatrix} 3\\1 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 0\\1 \end{bmatrix}$, $\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathbf{x} = \begin{bmatrix} 6\\8 \end{bmatrix}$. Find
the change-of-coordinates matrix P_β from β to the standard basis
in \mathbf{R}^2 and change-of-coordinates matrix P_β^{-1} from the standard
basis in \mathbf{R}^2 to β .

Solution :

$$P_{\beta} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

and so

$$P_{\beta}^{-1} = \left[\begin{array}{cc} 3 & 0 \\ 1 & 1 \end{array} \right]^{-1} = \left[\begin{array}{cc} \frac{1}{3} & 0 \\ -\frac{1}{3} & 1 \end{array} \right]$$

2

・ 何 ト ・ ヨ ト ・ ヨ ト

4.4 Coordinate Systems

rdinate Systems Change-of-Coordinate

イロト イ理ト イヨト イヨト

Change-of-Coordinates Matrix: Example (cont.)

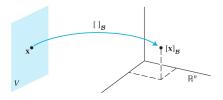
Example If $\mathbf{x} = \begin{bmatrix} 6\\8 \end{bmatrix}$, then use P_{β}^{-1} to find $[\mathbf{x}]_{\beta} = \begin{bmatrix} 2\\6 \end{bmatrix}$.

Solution:

$$[\mathbf{x}]_{eta} = P_{eta}^{-1}\mathbf{x} = \begin{bmatrix} rac{1}{3} & 0 \ -rac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 6 \ 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ -rac{1}{3} & 1 \end{bmatrix}$$

Change-of-Coordinates Matrix: Example

Coordinate mappings allow us to introduce coordinate systems for unfamiliar vector spaces.



Example

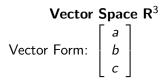
Standard basis for \mathbf{P}_2 : { $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ } = {1, t, t^2 }. Polynomials in \mathbf{P}_2 behave like vectors in \mathbf{R}^3 . Since

$$a+bt+ct^2 = \dots \mathbf{p}_1 + \dots \mathbf{p}_2 + \dots \mathbf{p}_3, \quad [a+bt+ct^2]_{\beta} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\beta}$$

We say that the vector space \mathbf{R}^3 is *isomorphic* to \mathbf{P}_2 .

Jiwen He, University of Houston

Parallel Worlds of \mathbf{R}^3 and \mathbf{P}_2



Vector Addition Example				
$\begin{bmatrix} -1 \end{bmatrix}$		2		[1]
2	+	3	=	5
		5		2

Vector Space P₂

Vector Form: $a + bt + bt^2$

Vector Addition Example $(-1+2t-3t^2) + (2+3t+5t^2)$ $= 1+5t+2t^2$

- 4 回 ト - 4 回 ト

Isomorphic

Isomorphic

Informally, we say that vector space V is **isomorphic** to W if every vector space calculation in V is accurately reproduced in W, and vice versa.

Assume β is a basis set for vector space V. Exercise 25 (page 223) shows that

• a set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in V is linearly independent if and only if $\{[\mathbf{u}_1]_\beta, [\mathbf{u}_2]_\beta, \dots, [\mathbf{u}_p]_\beta\}$ is linearly independent in \mathbf{R}^n .

Image: A math a math

Coordinate Vectors: Example

Example

Use coordinate vectors to determine if $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is a linearly independent set: $\mathbf{p}_1 = 1 - t$, $\mathbf{p}_2 = 2 - t + t^2$, $\mathbf{p}_3 = 2t + 3t^2$.

Solution: The standard basis set for P_2 is $\beta = \{1, t, t^2\}$. So

$$[\mathbf{p}_1]_{\beta} = \begin{bmatrix} & & \\ & & \end{bmatrix}, \ [\mathbf{p}_2]_{\beta} = \begin{bmatrix} & & \\ & & \end{bmatrix}, \ [\mathbf{p}_3]_{\beta} = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

Then

$$\left[\begin{array}{rrrr}1&2&0\\-1&-1&2\\0&1&3\end{array}\right]\sim\cdots\sim\left[\begin{array}{rrrr}1&2&0\\0&1&2\\0&0&1\end{array}\right]$$

By the IMT, $\{ [\mathbf{p}_1]_{\beta}, [\mathbf{p}_2]_{\beta}, [\mathbf{p}_3]_{\beta} \}$ is linearly _____ and therefore $\{ \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \}$ is linearly _____.

Coordinate Vectors: Example

Coordinate vectors also allow us to associate vector spaces with subspaces of other vectors spaces.

Example

Let
$$\beta = \{\mathbf{b}_1, \mathbf{b}_2\}$$
 where $\mathbf{b}_1 = \begin{bmatrix} 3\\3\\1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 0\\1\\3 \end{bmatrix}$.
Let $H = \operatorname{span}\{\mathbf{b}_1, \mathbf{b}_2\}$. Find $[\mathbf{x}]_{\beta}$, if $\mathbf{x} = \begin{bmatrix} 9\\13\\15 \end{bmatrix}$.

Solution: (a) Find c_1 and c_2 such that

$$c_1 \begin{bmatrix} 3\\3\\1 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\3 \end{bmatrix} = \begin{bmatrix} 9\\13\\15 \end{bmatrix}$$

Jiwen He, University of Houston

Coordinate Vectors: Example (cont.)

Corresponding augmented matrix:

$$\begin{bmatrix} 3 & 0 & 9 \\ 3 & 1 & 13 \\ 1 & 3 & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

→ ∃ →

Coordinate Vectors: Example (cont.)

