Math 2331 – Linear Algebra 4.5 The Dimension of a Vector Space

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

- 4 個 ト - 4 三 ト - 4 三 ト

Jiwen He, University of Houston

4.5 The Dimension of a Vector Space

- The Dimension of a Vector Space: Theorems
- The Dimension of a Vector Space: Definition
- The Dimension of a Vector Space: Example
- Dimensions of Subspaces of R^3
- Dimensions of Subspaces: Theorem
- The Basis Theorem
- Dimensions of Col A and Nul A: Examples

The Dimension of a Vector Space: Theorems

Theorem (9)

If a vector space V has a basis $\beta = {\mathbf{b}_1, \dots, \mathbf{b}_n}$, then any set in V containing more than n vectors must be linearly dependent.

Proof: Suppose $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is a set of vectors in V where p > n. Then the coordinate vectors $\{[\mathbf{u}_1]_\beta, \cdots, [\mathbf{u}_p]_\beta\}$ are in \mathbf{R}^n .

Since p > n, $\{ [\mathbf{u}_1]_{\beta}, \cdots, [\mathbf{u}_p]_{\beta} \}$ are linearly dependent and therefore $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ are linearly dependent.

The Dimension of a Vector Space: Theorems (cont.)

Theorem (10)

If a vector space V has a basis of n vectors, then every basis of V must consist of n vectors.

Proof: Suppose β_1 is a basis for V consisting of exactly *n* vectors. Now suppose β_2 is any other basis for V. By the definition of a basis, we know that β_1 and β_2 are both linearly independent sets.

By Theorem 9, if β_1 has more vectors than β_2 , then _____ is a linearly dependent set (which cannot be the case).

Again by Theorem 9, if β_2 has more vectors than β_1 , then _____ is a linearly dependent set (which cannot be the case).

Therefore β_2 has exactly n vectors also.

The Dimension of a Vector Space: Definition

Dimension of a Vector Space

If V is spanned by a finite set, then V is said to be **finite-dimensional**, and the **dimension** of V, written as dim V, is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be 0. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

The Dimension of a Vector Space: Example

Example

Find a basis and the dimension of the subspace

$$W = \left\{ \begin{bmatrix} a+b+2c\\ 2a+2b+4c+d\\ b+c+d\\ 3a+3c+d \end{bmatrix} : a, b, c, d \text{ are real} \right\}.$$

Solution: Since

$$\begin{bmatrix} a+b+2c\\ 2a+2b+4c+d\\ b+c+d\\ 3a+3c+d \end{bmatrix} = a \begin{bmatrix} 1\\ 2\\ 0\\ 3 \end{bmatrix} + b \begin{bmatrix} 1\\ 2\\ 1\\ 0 \end{bmatrix} + c \begin{bmatrix} 2\\ 4\\ 1\\ 3 \end{bmatrix} + d \begin{bmatrix} 0\\ 1\\ 1\\ 1 \end{bmatrix}$$

4.5 The Dimension of a Vector Space

 $\textit{W} = \textsf{span}\{\textit{v}_1,\textit{v}_2,\textit{v}_3,\textit{v}_4\}$

where
$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 2\\ 0\\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1\\ 2\\ 1\\ 0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2\\ 4\\ 1\\ 3 \end{bmatrix}$, $\mathbf{v}_4 = \begin{bmatrix} 0\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}$.

- Note that v₃ is a linear combination of v₁ and v₂, so by the Spanning Set Theorem, we may discard v₃.
- v₄ is not a linear combination of v₁ and v₂. So {v₁, v₂, v₄} is a basis for W. Also, dim W =____.

Dimensions of Subspaces of R^3

Example (Dimensions of subspaces of R^3)

- **4** *O-dimensional subspace* contains only the zero vector $\mathbf{0} = (0, 0, 0)$.
- **2** *1-dimensional subspaces.* Span $\{v\}$ where $v \neq 0$ is in \mathbb{R}^3 .
- **3** These subspaces are _____ through the origin.
- 2-dimensional subspaces. Span{u, v} where u and v are in R³ and are not multiples of each other.
- **6** These subspaces are _____ through the origin.
- ③ 3-dimensional subspaces. Span{u, v, w} where u, v, w are linearly independent vectors in R³. This subspace is R³ itself because the columns of A = [u v w] span R³ according to the IMT.

Dimensions of Subspaces: Theorem

Theorem (11)

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

dim $H \leq \dim V$.

Jiwen He, University of Houston

imension Basis Theorem

The Basis Theorem

Theorem (12 The Basis Theorem)

Let V be a p- dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p vectors in V is automatically a basis for V. Any set of exactly p vectors that spans V is automatically a basis for V.

Example

Show that
$$\{t, 1-t, 1+t-t^2\}$$
 is a basis for P_2 .

Solution: Let

$$\mathbf{v}_1 = t$$
, $\mathbf{v}_2 = 1 - t$, $\mathbf{v}_3 = 1 + t - t^2$ and $\beta = \{1, t, t^2\}$.

Corresponding coordinate vectors

$$[\mathbf{v}_1]_{\beta} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad [\mathbf{v}_2]_{\beta} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \quad [\mathbf{v}_3]_{\beta} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$

The Basis Theorem (cont.)

 $\left[\mathbf{v}_{2}
ight]_{eta}$ is not a multiple of $\left[\mathbf{v}_{1}
ight]_{eta}$

 $[\mathbf{v}_3]_{eta}$ is not a linear combination of $[\mathbf{v}_1]_{eta}$ and $[\mathbf{v}_2]_{eta}$

 $\implies \left\{ \begin{bmatrix} \mathbf{v}_1 \end{bmatrix}_{\beta}, \begin{bmatrix} \mathbf{v}_2 \end{bmatrix}_{\beta}, \begin{bmatrix} \mathbf{v}_3 \end{bmatrix}_{\beta} \right\} \text{ is linearly independent and therefore} \\ \left\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \right\} \text{ is also linearly independent.}$

Since dim $P_2=$ 3, $\{\textbf{v}_1, \textbf{v}_2, \textbf{v}_3\}$ is a basis for P_2 according to The Basis Theorem.

ロト く得下 くほト くほう

Dimensions of Col A and Nul A: Example

Recall our techniques to find basis sets for column spaces and null spaces.

Example Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{bmatrix}$. Find dim Col A and dim Nul A. Solution So $\left\{ \left| \begin{array}{c} \left| \right\rangle, \left| \end{array} \right\rangle \right\}$ is a basis for Col A and dim Col A = 2.

4.5 The Dimension of a Vector Space Dimension Basis Theorem

Dimensions of Col A and Nul A: Example (cont.)

Now solve $A\mathbf{x} = \mathbf{0}$ by row-reducing the corresponding augmented matrix. Then we arrive at

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 2 & 4 & 7 & 8 & 0 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
$$x_1 = -2x_2 - 4x_4$$
$$x_3 = 0$$
$$\begin{bmatrix} x_1 \\ -2 \\ -1 \end{bmatrix} \begin{bmatrix} -4 \\ -4 \end{bmatrix}$$

 $\begin{vmatrix} x_2 \\ x_3 \\ x_4 \end{vmatrix} = x_2 \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} + x_4 \begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$

- 4 @ ▶ 4 @ ▶ 4 @ ▶

Dimensions of Col A and Nul A: Example (cont.)

So

$$\left\{ \left[\begin{array}{c} -2\\1\\0\\0 \end{array} \right], \left[\begin{array}{c} -4\\0\\0\\1 \end{array} \right] \right\}$$

is a basis for Nul A and dim Nul A = 2.

4.5 The Dimension of a Vector Space

 Note

 $dim \ Col \ A = number \ of \ pivot \ columns \ of \ A$
 $dim \ Nul \ A = number \ of \ free \ variables \ of \ A$

14 / 14

- 4 @ ▶ 4 @ ▶ 4 @ ▶