Math 2331 – Linear Algebra 4.6 Rank

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

(日) (同) (三) (三)

Jiwen He, University of Houston

4.6 Rank

- Row Space
- Row Space and Row Equivalence
- Row Space: Examples
- Rank: Definition
- Rank Theorem
- Rank Theorem: Examples
- Visualizing Row A and Nul A
- The Invertible Matrix Theorem (continued)

3 1 4

Row Space

Row Space

The set of all linear combinations of the row vectors of a matrix A is called the **row space** of A and is denoted by Row A.

Example Let $A = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6 \end{bmatrix} \text{ and } \begin{array}{c} \mathbf{r}_1 = (-1, \ 2, \ 3, \ 6) \\ \mathbf{r}_2 = (2, -5, -6, -12) \\ \mathbf{r}_3 = (1, -3, -3, -6) \end{bmatrix} \cdot \\ \mathbf{Row} \ A = \text{Span}\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\} \quad (\text{a subspace of } \mathbf{R}^4)$

While it is natural to express row vectors horizontally, they can also be written as column vectors if it is more convenient. Therefore

$$\mathsf{Col} \ A^{\mathsf{T}} = \mathsf{Row} \ A$$

Row Space and Row Equivalence

When we use row operations to reduce matrix A to matrix B, we are taking linear combinations of the rows of A to come up with B. We could reverse this process and use row operations on B to get back to A. Because of this, the row space of A equals the row space of B.

Theorem (13)

If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as B.

Row Space: Example

Example

The matrices

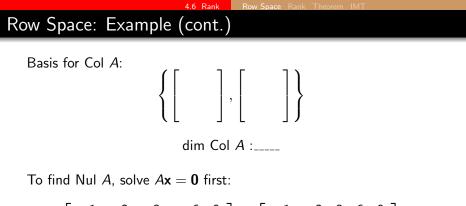
$$A = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 2 & -5 & -6 & -12 \\ 1 & -3 & -3 & -6 \end{bmatrix} \text{ and } B = \begin{bmatrix} -1 & 2 & 3 & 6 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

are row equivalent. Find a basis for row space, column space and null space of A. Also state the dimension of each.

Solution: Basis for Row A:

dim Row A :____

イロト 不得下 イヨト イヨト



$$\begin{bmatrix} -1 & 2 & 3 & 6 & 0 \\ 2 & -5 & -6 & -12 & 0 \\ 1 & -3 & -3 & -6 & 0 \end{bmatrix} \sim \begin{bmatrix} -1 & 2 & 3 & 6 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & -3 & -6 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Jiwen He, University of Houston

イロト イ理ト イヨト イヨト

Row Space: Example (cont.)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3x_3 + 6x_4 \\ 0 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 6 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Basis for Nul A :
$$\left\{ \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$$

4.6 Rank

and dim Nul A = _____

2

(日) (周) (三) (三)

Jiwen He, University of Houston

7 / 16

Rank: Defintion

Note the following:

- dim Col A = # of pivots of A = # of nonzero rows in B = dim Row A.
- dim Nul A = # of free variables = # of nonpivot columns of A.

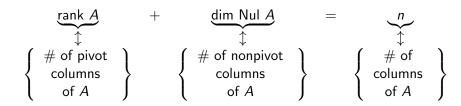
Rank

The **rank** of A is the dimension of the column space of A.

rank $A = \dim \operatorname{Col} A = \#$ of pivot columns of $A = \dim \operatorname{Row} A$.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Rank Theorem



Theorem (14 Rank Theorem)

The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

rank $A + \dim Nul A = n$.

Jiwen He, University of Houston

・ロト ・ 同ト ・ ヨト ・ ヨ

4.6 Rank

w Space Rank Theorem

Rank Theorem: Example

Since Row
$$A = \text{Col } A^T$$
, rank $A = \text{rank } A^T$

Example

Suppose that a 5 × 8 matrix A has rank 5. Find dim Nul A, dim Row A and rank A^{T} . Is Col $A = \mathbf{R}^{5}$?

Solution:

$$\underbrace{\operatorname{rank} A}_{\uparrow} + \underbrace{\operatorname{dim} \operatorname{Nul} A}_{\downarrow} = \underbrace{n}_{\uparrow}$$

$$5 + \operatorname{dim} \operatorname{Nul} A = 8 \Rightarrow \operatorname{dim} \operatorname{Nul} A = _____$$

$$\operatorname{dim} \operatorname{Row} A = \operatorname{rank} A = _____$$

$$\Rightarrow \operatorname{rank} A^T = \operatorname{rank} ___= _____$$

Since rank A = # of pivots in A = 5, there is a pivot in every row. So the columns of A span \mathbb{R}^5 (by Theorem 4, page 43). Hence Col $A = \mathbb{R}^5$.

Jiwen He, University of Houston

Rank Theorem: Example

Example

For a 9 \times 12 matrix A, find the smallest possible value of dim Nul A.

Solution:

rank
$$A + \dim$$
 Nul $A = 12$

dim Nul
$$A = 12 - \underline{\operatorname{rank} A}$$

largest possible value=____

smallest possible value of dim Nul $A = _$

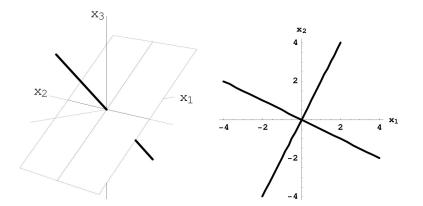
Example

Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 2 \end{bmatrix}$$
. One can easily verify the following:
1. Basis for Nul $A = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \right\}$ and Nul A is a plane in
 \mathbb{R}^{3} .
2. Basis for Row $A = \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}$ and Row A is a line in \mathbb{R}^{3} .
3. Basis for Col $A = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ and Col A is a line in \mathbb{R}^{2} .
4. Basis for Nul $A^{T} = \left\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$ and Nul A^{T} is a line in \mathbb{R}^{2} .

4.6 Rank

畃

Rank Theorem: Example (cont.)



4.6 Rank

Subspaces Nul A and Row A

Subspaces Nul A^T and Col A

Rank Theorem: Example

The Rank Theorem provides us with a powerful tool for determining information about a system of equations.

Example

A scientist solves a homogeneous system of 50 equations in 54 variables and finds that exactly 4 of the unknowns are free variables. Can the scientist be *certain* that any associated nonhomogeneous system (with the same coefficients) has a solution?

Solution: Recall that

• rank $A = \dim \operatorname{Col} A = \#$ of pivot columns of A

• dim Nul
$$A = #$$
 of free variables

Rank Theorem: Example (cont.)

In this case $A\mathbf{x} = \mathbf{0}$ of where A is 50×54 .

By the rank theorem,

rank *A* + _____ = _____

or

rank $A = \dots$.

So any nonhomogeneous system $A\mathbf{x} = \mathbf{b}$ has a solution because there is a pivot in every row.

呥

イロト イ伺ト イヨト イヨト

The Invertible Matrix Theorem (continued)

Theorem (Invertible Matrix Theorem (continued))

Let A be a square $n \times n$ matrix. The the following statements are equivalent:

- m. The columns of A form a basis for \mathbf{R}^n
- n. Col $A = \mathbf{R}^n$
- o. dim Col A = n
- **p**. rank A = n
- **q**. *Nul* $A = \{0\}$
- **r**. dim Nul A = 0