Math 2331 - Linear Algebra 5.3 Diagonalization

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

5.3 Diagonalization

- Diagonalization
- Matrix Powers: Example
- Diagonalizable
- Diagonalization Theorem
- Diagonalization: Examples

Diagonalization

The goal here is to develop a useful factorization $A=P D P^{-1}$, when A is $n \times n$. We can use this to compute A^{k} quickly for large k.

The matrix D is a diagonal matrix (i.e. entries off the main diagonal are all zeros).

Powers of Diagonal Matrix

D^{k} is trivial to compute as the following example illustrates.

Example

Let $D=\left[\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right]$. Compute D^{2} and D^{3}. In general, what is D^{k}, where k is a positive integer?

Diagonalization (cont.)

Solution:

$$
\begin{gathered}
D^{2}=\left[\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
D^{3}=D^{2} D=\left[\begin{array}{cc}
5^{2} & 0 \\
0 & 4^{2}
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
\end{gathered}
$$

and in general,

$$
D^{k}=\left[\begin{array}{cc}
5^{k} & 0 \\
0 & 4^{k}
\end{array}\right]
$$

Matrix Powers: Example

Example

Let $A=\left[\begin{array}{cc}6 & -1 \\ 2 & 3\end{array}\right]$. Find a formula for A^{k} given that
$A=P D P^{-1}$ where $P=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right], D=\left[\begin{array}{ll}5 & 0 \\ 0 & 4\end{array}\right]$ and $P^{-1}=$ $\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$.

Solution:

$$
\begin{gathered}
A^{2}=\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D\left(P^{-1} P\right) D P^{-1}=P D D P^{-1} \\
=P D^{2} P^{-1}
\end{gathered}
$$

Again

$$
\begin{gathered}
A^{3}=A^{2} A=\left(P D^{2} P^{-1}\right)\left(P D P^{-1}\right)=P D^{2}\left(P^{-1} P\right) D P^{-1} \\
=P D^{3} P^{-1}
\end{gathered}
$$

Matrix Powers: Example (cont.)

In general,

$$
\begin{gathered}
A^{k}=P D^{k} P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
5^{k} & 0 \\
0 & 4^{k}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \\
=\left[\begin{array}{cc}
2 \cdot 5^{k}-4^{k} & -5^{k}+4^{k} \\
2 \cdot 5^{k}-2 \cdot 4^{k} & -5^{k}+2 \cdot 4^{k}
\end{array}\right] .
\end{gathered}
$$

Diagonalizable

A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, i.e. if $A=P D P^{-1}$ where P is invertible and D is a diagonal matrix.

Diagonalizable

When is A diagonalizable?
(The answer lies in examining the eigenvalues and eigenvectors of A.)

Note that

$$
\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=5\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=4\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Altogether

$$
\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
5 & 8
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
--- & 0 \\
0 & ---
\end{array}\right]
$$

Equivalently,

$$
\left[\begin{array}{cc}
6 & -1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{-1}
$$

Diagonalizable (cont.)

In general,

$$
\begin{gathered}
A\left[\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots \\
\mathbf{v}_{n}
\end{array}\right]= \\
{\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]}
\end{gathered}
$$

and if $\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right]$ is invertible, A equals

$$
\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]^{-1}
$$

Diagonalization Theorem

Theorem (Diagonalization)

- An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
- In fact, $A=P D P^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

Diagonalization: Example

Example

Diagonalize the following matrix, if possible.

$$
A=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

Step 1. Find the eigenvalues of A.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}
2-\lambda & 0 & 0 \\
1 & 2-\lambda & 1 \\
-1 & 0 & 1-\lambda
\end{array}\right] \\
&=(2-\lambda)^{2}(1-\lambda)=0
\end{aligned}
$$

Eigenvalues of $A: \lambda=1$ and $\lambda=2$.

Diagonalization: Example (cont.)

Step 2. Find three linearly independent eigenvectors of \mathbf{A}. By solving

$$
(A-\lambda I) \mathbf{x}=\mathbf{0}
$$

for each value of λ, we obtain the following:

$$
\begin{aligned}
& \quad \text { Basis for } \lambda=1: \quad \mathbf{v}_{1}=\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] \\
& \text { Basis for } \lambda=2: \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Diagonalization: Example (cont.)

Step 3: Construct \mathbf{P} from the vectors in step 2.

$$
P=\left[\begin{array}{rrr}
0 & 0 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Step 4: Construct D from the corresponding eigenvalues.

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Diagonalization: Example (cont.)

Step 5: Check your work by verifying that $A P=P D$

$$
\begin{gathered}
A P=\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & 1 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
0 & 0 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & -2 \\
-1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right] \\
P D=\left[\begin{array}{rrr}
0 & 0 & -1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & -2 \\
-1 & 2 & 0 \\
1 & 0 & 2
\end{array}\right]
\end{gathered}
$$

Diagonalization: Example

Example

Diagonalize the following matrix, if possible.

$$
A=\left[\begin{array}{lll}
2 & 4 & 6 \\
0 & 2 & 2 \\
0 & 0 & 4
\end{array}\right]
$$

Since this matrix is triangular, the eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=4$. By solving $(A-\lambda I) \mathbf{x}=\mathbf{0}$ for each eigenvalue, we would find the following:

$$
\lambda_{1}=2: \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \lambda_{2}=4: \quad \mathbf{v}_{2}=\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right]
$$

Every eigenvector of A is a multiple of \mathbf{v}_{1} or \mathbf{v}_{2} which means there are not three linearly independent eigenvectors of A and by Theorem 5, A is not diagonalizable.

Diagonalization: Example

Example

Why is $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 6 & 0 \\ 3 & 2 & 1\end{array}\right]$ diagonalizable?
Solution:
Since A has three eigenvalues:

$$
\lambda_{1}=\ldots--, \quad \lambda_{2}=\ldots,--, \quad \lambda_{3}=
$$

and since eigenvectors corresponding to distinct eigenvalues are linearly independent, A has three linearly independent eigenvectors and it is therefore diagonalizable.

Theorem (6)

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Diagonalization: Example

Example

Diagonalize the following matrix, if possible.

$$
A=\left[\begin{array}{cccc}
-2 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
24 & -12 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

Solution: Eigenvalues: -2 and 2 (each with multiplicity 2). Solving $(A-\lambda I) \mathbf{x}=\mathbf{0}$ yields the following eigenspace basis sets.

$$
\text { Basis for } \lambda=-2: \quad \mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
0 \\
-6 \\
0
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
0
\end{array}\right]
$$

Diagonalization: Example (cont.)

$\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent
$\Rightarrow P=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4}\end{array}\right]$ is invertible
$\Rightarrow A=P D P^{-1}$, where

$$
P=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-6 & 3 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{rrrr}
-2 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] .
$$

Diagonalization: Theorem

Theorem (7)

Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_{1}, \ldots, \lambda_{p}$.
a. For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is less than or equal to the multiplicity of the eigenvalue λ_{k}.
b. The matrix A is diagonalizable if and only if the sum of the dimensions of the distinct eigenspaces equals n, and this happens if and only if the dimension of the eigenspace for each λ_{k} equals the multiplicity of λ_{k}.
c. If A is diagonalizable and β_{k} is a basis for the eigenspace corresponding to λ_{k} for each k, then the total collection of vectors in the sets $\beta_{1}, \ldots, \beta_{p}$ forms an eigenvector basis for \mathbf{R}^{n}.

