Math 2331 - Linear Algebra 6.1-6.3 Orthogonality Key Exercises

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331

6.1 Inner Product, Length \& Orthogonality Key Exercises 19-20, 27-31

- The general material on orthogonal complements is essential for later work.
- Key Exercises: 19-20, 27-31. Exercies 27-31 concern facts that are needed later

All vectors are in \mathbf{R}^{n}. Mark each statement True or False. Justify each answer.
19. a. $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$.
b. For any scalar $c, \mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$.
c. If the distance from \mathbf{u} to \mathbf{v} equals the distance from \mathbf{u} to $-\mathbf{v}$, then \mathbf{u} and \mathbf{v} are orthogonal.
d. For a square matrix A, vectors in $\operatorname{Col} A$ are orthogonal to vectors in $\operatorname{Nul} A$.
e. If vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ span a subspace W and if \mathbf{x} is orthogonal to each \mathbf{v}_{j} for $j=1, \ldots, p$, then \mathbf{x} is in W^{\perp}.

All vectors are in \mathbf{R}^{n}. Mark each statement True or False. Justify each answer.
20. a. $\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}=0$.
b. For any scalar $c,\|c \mathbf{v}\|=c\|\mathbf{v}\|$.
c. If \mathbf{x} is orthogonal to every vector in a subspace W, then \mathbf{x} is in W^{\perp}.
d. If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.
e. For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.
27. Suppose a vector \mathbf{y} is orthogonal to vectors \mathbf{u} and \mathbf{v}. Show that \mathbf{y} is orthogonal to the vector $\mathbf{u}+\mathbf{v}$.
28. Suppose \mathbf{y} is orthogonal to \mathbf{u} and \mathbf{v}. Show that \mathbf{y} is orthogonal to every \mathbf{w} in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$. [Hint: An arbitrary \mathbf{w} in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ has the form $\mathbf{w}=c_{1} \mathbf{u}+c_{2} \mathbf{v}$. Show that \mathbf{y} is orthogonal to such a vector \mathbf{w}.]
29. Let $W=\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$. Show that if \mathbf{x} is orthogonal to each \mathbf{v}_{j}, for $1 \leq j \leq p$, then \mathbf{x} is orthogonal to every vector in W.
30. Let W be a subspace of \mathbb{R}^{n}, and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^{n} using the following steps.
a. Take \mathbf{z} in W^{\perp}, and let \mathbf{u} represent any element of W. Then $\mathbf{z} \cdot \mathbf{u}=0$. Take any scalar c and show that $c \mathbf{z}$ is orthogonal to \mathbf{u}. (Since \mathbf{u} was an arbitrary element of W, this will show that $c \mathbf{z}$ is in W^{\perp}.)
b. Take \mathbf{z}_{1} and \mathbf{z}_{2} in W^{\perp}, and let \mathbf{u} be any element of W. Show that $\mathbf{z}_{1}+\mathbf{z}_{2}$ is orthogonal to \mathbf{u}. What can you conclude about $\mathbf{z}_{1}+\mathbf{z}_{2}$? Why?
c. Finish the proof that W^{\perp} is a subspace of \mathbb{R}^{n}.
31. Show that if \mathbf{x} is in both W and W^{\perp}, then $\mathbf{x}=\mathbf{0}$.

6.2 Orthogonal Sets Key Exercises 13-14, 23-24, 26-30

- The term orthogonal matrix applies only to certain square matrices.
- Key Exercises: 13-14, 23-24, 26-30. Exercies 13-14 prepare for Section 6.3.

13. Let $\mathbf{y}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{r}4 \\ -7\end{array}\right]$. Write \mathbf{y} as the sum of two orthogonal vectors, one in $\operatorname{Span}\{\mathbf{u}\}$ and one orthogonal to \mathbf{u}.
14. Let $\mathbf{y}=\left[\begin{array}{l}2 \\ 6\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}7 \\ 1\end{array}\right]$. Write \mathbf{y} as the sum of a vector in $\operatorname{Span}\{\mathbf{u}\}$ and a vector orthogonal to \mathbf{u}.

All vectors are in \mathbf{R}^{n}. Mark each statement True or False. Justify each answer.
23. a. Not every linearly independent set in \mathbb{R}^{n} is an orthogonal set.
b. If \mathbf{y} is a linear combination of nonzero vectors from an orthogonal set, then the weights in the linear combination can be computed without row operations on a matrix.
c. If the vectors in an orthogonal set of nonzero vectors are normalized, then some of the new vectors may not be orthogonal.
d. A matrix with orthonormal columns is an orthogonal matrix.
e. If L is a line through $\mathbf{0}$ and if $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto L, then $\|\hat{\mathbf{y}}\|$ gives the distance from \mathbf{y} to L.

All vectors are in \mathbf{R}^{n}. Mark each statement True or False. Justify each answer.
24. a. Not every orthogonal set in \mathbb{R}^{n} is linearly independent.
b. If a set $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}$ has the property that $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0$ whenever $i \neq j$, then S is an orthonormal set.
c. If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A \mathbf{x}$ preserves lengths.
d. The orthogonal projection of \mathbf{y} onto \mathbf{v} is the same as the orthogonal projection of \mathbf{y} onto $c \mathbf{v}$ whenever $c \neq 0$.
e. An orthogonal matrix is invertible.
26. Suppose W is a subspace of \mathbb{R}^{n} spanned by n nonzero orthogonal vectors. Explain why $W=\mathbb{R}^{n}$.
27. Let U be a square matrix with orthonormal columns. Explain why U is invertible. (Mention the theorems you use.)
28. Let U be an $n \times n$ orthogonal matrix. Show that the rows of U form an orthonormal basis of \mathbb{R}^{n}.
29. Let U and V be $n \times n$ orthogonal matrices. Explain why $U V$ is an orthogonal matrix. [That is, explain why $U V$ is invertible and its inverse is $(U V)^{T}$.]
30. Let U be an orthogonal matrix, and construct V by interchanging some of the columns of U. Explain why V is an orthogonal matrix.

6.3 Orthogonal Projections Key Exercises 19-24

- Theorem 9 is needed for the Gram-Schmidt process.
- Key Exercises: 19-24. Exercies 19-20 lead naturally into the Gram-Schmidt process.

19. Let $\mathbf{u}_{1}=\left[\begin{array}{r}1 \\ 1 \\ -2\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}5 \\ -1 \\ 2\end{array}\right]$, and $\mathbf{u}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Note that
\mathbf{u}_{1} and \mathbf{u}_{2} are orthogonal but that \mathbf{u}_{3} is not orthogonal to \mathbf{u}_{1} or \mathbf{u}_{2}. It can be shown that \mathbf{u}_{3} is not in the subspace W spanned by \mathbf{u}_{1} and \mathbf{u}_{2}. Use this fact to construct a nonzero vector \mathbf{v} in \mathbb{R}^{3} that is orthogonal to \mathbf{u}_{1} and \mathbf{u}_{2}.
20. Let \mathbf{u}_{1} and \mathbf{u}_{2} be as in Exercise 19, and let $\mathbf{u}_{4}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. It can be shown that \mathbf{u}_{4} is not in the subspace W spanned by \mathbf{u}_{1} and \mathbf{u}_{2}. Use this fact to construct a nonzero vector \mathbf{v} in \mathbb{R}^{3} that is orthogonal to \mathbf{u}_{1} and \mathbf{u}_{2}.

All vectors are in \mathbf{R}^{n}. Mark each statement True or False. Justify each answer.
21. a. If \mathbf{z} is orthogonal to \mathbf{u}_{1} and to \mathbf{u}_{2} and if $W=$ $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, then \mathbf{z} must be in W^{\perp}.
b. For each \mathbf{y} and each subspace W, the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$ is orthogonal to W.
c. The orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto a subspace W can sometimes depend on the orthogonal basis for W used to compute $\hat{\mathbf{y}}$.
d. If \mathbf{y} is in a subspace W, then the orthogonal projection of \mathbf{y} onto W is \mathbf{y} itself.
e. If the columns of an $n \times p$ matrix U are orthonormal, then $U U^{T} \mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U.

All vectors are in \mathbf{R}^{n}. Mark each statement True or False. Justify each answer.
22. a. If W is a subspace of \mathbb{R}^{n} and if \mathbf{v} is in both W and W^{\perp}, then \mathbf{v} must be the zero vector.
b. In the Orthogonal Decomposition Theorem, each term in formula (2) for $\hat{\mathbf{y}}$ is itself an orthogonal projection of \mathbf{y} onto a subspace of W.
c. If $\mathbf{y}=\mathbf{z}_{1}+\mathbf{z}_{2}$, where \mathbf{z}_{1} is in a subspace W and \mathbf{z}_{2} is in W^{\perp}, then \mathbf{z}_{1} must be the orthogonal projection of \mathbf{y} onto W.
d. The best approximation to \mathbf{y} by elements of a subspace W is given by the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$.
e. If an $n \times p$ matrix U has orthonormal columns, then $U U^{T} \mathbf{x}=\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}.
23. Let A be an $m \times n$ matrix. Prove that every vector \mathbf{x} in \mathbb{R}^{n} can be written in the form $\mathbf{x}=\mathbf{p}+\mathbf{u}$, where \mathbf{p} is in Row A and \mathbf{u} is in $\operatorname{Nul} A$. Also, show that if the equation $A \mathbf{x}=\mathbf{b}$ is consistent, then there is a unique \mathbf{p} in Row A such that $A \mathbf{p}=\mathbf{b}$.
24. Let W be a subspace of \mathbb{R}^{n} with an orthogonal basis $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}\right\}$, and let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$ be an orthogonal basis for W^{\perp}.
a. Explain why $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right\}$ is an orthogonal set.
b. Explain why the set in part (a) spans \mathbb{R}^{n}.
c. Show that $\operatorname{dim} W+\operatorname{dim} W^{\perp}=n$.

