Math 2331 – Linear Algebra

6.2 Orthogonal Sets

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math2331
6.2 Orthogonal Sets

- Orthogonal Sets: Examples
- Orthogonal Sets: Theorem
- Orthogonal Basis: Examples
- Orthogonal Basis: Theorem
- Orthogonal Projections
- Orthonormal Sets
- Orthonormal Matrix: Examples
- Orthonormal Matrix: Theorems
Orthogonal Sets

A set of vectors \(\{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) in \(\mathbb{R}^n \) is called an **orthogonal set** if \(\mathbf{u}_i \cdot \mathbf{u}_j = 0 \) whenever \(i \neq j \).

Example

Is \(\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} \) an orthogonal set?

Solution: Label the vectors \(\mathbf{u}_1, \mathbf{u}_2, \) and \(\mathbf{u}_3 \) respectively. Then

\[
\mathbf{u}_1 \cdot \mathbf{u}_2 =
\]
\[
\mathbf{u}_1 \cdot \mathbf{u}_3 =
\]
\[
\mathbf{u}_2 \cdot \mathbf{u}_3 =
\]

Therefore, \(\{ \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \} \) is an orthogonal set.
Theorem (4)

Suppose \(S = \{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \) is an orthogonal set of nonzero vectors in \(\mathbb{R}^n \) and \(W = \text{span}\{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \} \). Then \(S \) is a linearly independent set and is therefore a basis for \(W \).

Partial Proof: Suppose

\[
\begin{align*}
 c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p &= 0 \\
 (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1 &= 0 \\
 (c_1 \mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2 \mathbf{u}_2) \cdot \mathbf{u}_1 + \cdots + (c_p \mathbf{u}_p) \cdot \mathbf{u}_1 &= 0 \\
 c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2 (\mathbf{u}_2 \cdot \mathbf{u}_1) + \cdots + c_p (\mathbf{u}_p \cdot \mathbf{u}_1) &= 0 \\
 c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1) &= 0
\end{align*}
\]

Since \(\mathbf{u}_1 \neq 0 \), \(\mathbf{u}_1 \cdot \mathbf{u}_1 > 0 \) which means \(c_1 = 0 \).

In a similar manner, \(c_2, \ldots, c_p \) can be shown to be all 0. So \(S \) is a linearly independent set.
An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Example

Suppose $S = \{u_1, u_2, \ldots, u_p\}$ is an orthogonal basis for a subspace W of \mathbb{R}^n and suppose y is in W. Find c_1, \ldots, c_p so that

$$y = c_1 u_1 + c_2 u_2 + \cdots + c_p u_p.$$

Solution:

$$y \cdot u_1 = (c_1 u_1 + c_2 u_2 + \cdots + c_p u_p) \cdot u_1$$

$$y \cdot u_1 = c_1 (u_1 \cdot u_1) + c_2 (u_2 \cdot u_1) + \cdots + c_p (u_p \cdot u_1)$$

$$y \cdot u_1 = c_1 (u_1 \cdot u_1) \quad \Rightarrow \quad c_1 = \frac{y \cdot u_1}{u_1 \cdot u_1}$$

Similarly, $c_2 = \ldots, c_p =$
Orthogonal Basis: Theorem

Theorem (5)

Let \(\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p\} \) be an orthogonal basis for a subspace \(W \) of \(\mathbb{R}^n \). Then each \(\mathbf{y} \) in \(W \) has a unique representation as a linear combination of \(\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_p \). In fact, if

\[
\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p
\]

then

\[
c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j} \quad (j = 1, \ldots, p)
\]
Orthogonal Basis: Example

Example

Express \(y = \begin{bmatrix} 3 \\ 7 \\ 4 \end{bmatrix} \) as a linear combination of the orthogonal basis

\[
\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}.
\]

Solution:

\[
\frac{y \cdot u_1}{u_1 \cdot u_1} = \frac{y \cdot u_2}{u_2 \cdot u_2} = \frac{y \cdot u_3}{u_3 \cdot u_3} =
\]

Hence

\[
y = ____u_1 + ____u_2 + ____u_3
\]
Orthogonal Projections

For a nonzero vector \mathbf{u} in \mathbb{R}^n, suppose we want to write \mathbf{y} in \mathbb{R}^n as the following:

$$\mathbf{y} = (\text{multiple of } \mathbf{u}) + (\text{multiple a vector } \perp \text{ to } \mathbf{u})$$

$$(\mathbf{y} - \alpha \mathbf{u}) \cdot \mathbf{u} = 0 \implies \mathbf{y} \cdot \mathbf{u} - \alpha (\mathbf{u} \cdot \mathbf{u}) = 0 \implies \alpha =$$

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \quad \text{(orthogonal projection of } \mathbf{y} \text{ onto } \mathbf{u})$$

$$\mathbf{z} = \mathbf{y} - \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \quad \text{(component of } \mathbf{y} \text{ orthogonal to } \mathbf{u})$$
Example

Let $\mathbf{y} = \begin{bmatrix} -8 \\ 4 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line through $\mathbf{0}$ and \mathbf{u}.

Solution:

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} =$$

Distance from \mathbf{y} to the line through $\mathbf{0}$ and \mathbf{u} is the distance from $\hat{\mathbf{y}}$ to \mathbf{y}:

$$= \| \hat{\mathbf{y}} - \mathbf{y} \| =$$
Orthonormal Sets

A set of vectors \(\{u_1, u_2, \ldots, u_p\} \) in \(\mathbb{R}^n \) is called an **orthonormal set** if it is an orthogonal set of unit vectors.

Orthonormal Basis

If \(W = \text{span}\{u_1, u_2, \ldots, u_p\} \), then \(\{u_1, u_2, \ldots, u_p\} \) is an orthonormal basis for \(W \).

Recall that \(v \) is a unit vector if \(||v|| = \sqrt{v \cdot v} = \sqrt{v^T v} = 1 \).
Orthonormal Matrix: Example

Suppose $U = [u_1 \ u_2 \ u_3]$ where $\{u_1, u_2, u_3\}$ is an orthonormal set.

$$U^T U = \begin{bmatrix} u_1^T \\ u_2^T \\ u_3^T \end{bmatrix} [u_1 \ u_2 \ u_3] = \begin{bmatrix} \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$$

Orthogonal Matrix

It can be shown that

$$UU^T = I.$$

So

$$U^{-1} = U^T$$

(such a matrix is called an **orthogonal matrix**).
Theorem (6)

An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

Theorem (7)

Let U be an $m \times n$ matrix with orthonormal columns, and let \mathbf{x} and \mathbf{y} be in \mathbb{R}^n. Then

a. $\|U\mathbf{x}\| = \|\mathbf{x}\|

b. $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$

c. $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$.

Proof of part b: $(U\mathbf{x}) \cdot (U\mathbf{y}) =$