Math 2331 – Linear Algebra 6.2 Orthogonal Sets

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/math2331

Jiwen He, University of Houston

6.2 Orthogonal Sets

- Orthogonal Sets: Examples
- Orthogonal Sets: Theorem
- Orthogonal Basis: Examples
- Orthogonal Basis: Theorem
- Orthogonal Projections
- Orthonormal Sets
- Orthonormal Matrix: Examples
- Orthonormal Matrix: Theorems

< 3 > < 3 >

Orthogonal Sets

Orthogonal Sets

A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in \mathbf{R}^n is called an **orthogonal set** if $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$.

Solution: Label the vectors $\boldsymbol{u}_1,\boldsymbol{u}_2,$ and \boldsymbol{u}_3 respectively. Then

- $\mathbf{u}_1 \cdot \mathbf{u}_2 =$
- $\mathbf{u}_1 \cdot \mathbf{u}_3 =$
- $\mathbf{u}_2 \cdot \mathbf{u}_3 =$

Therefore, $\{u_1,u_2,u_3\}$ is an orthogonal set.

3 / 12

Orthogonal Sets: Theorem

Theorem (4)

Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p}$ is an orthogonal set of nonzero vectors in \mathbf{R}^n and $W = span{\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}}$. Then S is a linearly independent set and is therefore a basis for W.

Partial Proof: Suppose

$$c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} + \dots + c_{p}\mathbf{u}_{p} = \mathbf{0}$$

$$(c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} + \dots + c_{p}\mathbf{u}_{p}) \cdot = \mathbf{0} \cdot$$

$$(c_{1}\mathbf{u}_{1}) \cdot \mathbf{u}_{1} + (c_{2}\mathbf{u}_{2}) \cdot \mathbf{u}_{1} + \dots + (c_{p}\mathbf{u}_{p}) \cdot \mathbf{u}_{1} = \mathbf{0}$$

$$c_{1}(\mathbf{u}_{1} \cdot \mathbf{u}_{1}) + c_{2}(\mathbf{u}_{2} \cdot \mathbf{u}_{1}) + \dots + c_{p}(\mathbf{u}_{p} \cdot \mathbf{u}_{1}) = \mathbf{0}$$

$$c_{1}(\mathbf{u}_{1} \cdot \mathbf{u}_{1}) = \mathbf{0}$$

Since $\mathbf{u}_1 \neq \mathbf{0}$, $\mathbf{u}_1 \cdot \mathbf{u}_1 > 0$ which means $c_1 = \dots$. In a similar manner, c_2, \dots, c_p can be shown to by all 0. So S is a linearly independent set.

Jiwen He, University of Houston

Orthogonal Basis

Orthogonal Basis: Example

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Example

Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p}$ is an orthogonal basis for a subspace W of \mathbf{R}^n and suppose \mathbf{y} is in W. Find c_1, \dots, c_p so that

 $\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p.$

Solution:

$$\mathbf{y} \cdot = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$
$$\mathbf{y} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$
$$\mathbf{y} \cdot \mathbf{u}_1 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2 (\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p (\mathbf{u}_p \cdot \mathbf{u}_1)$$
$$\mathbf{y} \cdot \mathbf{u}_1 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1) \implies c_1 = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1}$$

Similarly,
$$c_2 = , \dots, c_p =$$

Orthogonal Basis: Theorem

Theorem (5)

Let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbf{R}^n . Then each \mathbf{y} in W has a unique representation as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p$. In fact, if

$$\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \cdots + c_p \mathbf{u}_p$$

then

$$c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$$
 $(j = 1, \dots, p)$

Orthogonal Basis: Example

Express
$$\mathbf{y} = \begin{bmatrix} 3\\7\\4 \end{bmatrix}$$
 as a linear combination of the orthogonal basis
$$\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}.$$

Solution:

イロト 不得下 イヨト イヨト

Orthogonal Projections

For a nonzero vector ${\bf u}$ in ${\bf R}^n,$ suppose we want to write ${\bf y}$ in ${\bf R}^n$ as the the following

 $\mathbf{y} = ($ multiple of $\mathbf{u}) + ($ multiple a vector \perp to $\mathbf{u})$

$$(\mathbf{y} - \alpha \mathbf{u}) \cdot \mathbf{u} = 0 \implies \mathbf{y} \cdot \mathbf{u} - \alpha (\mathbf{u} \cdot \mathbf{u}) = 0 \implies \alpha =$$

 $\widehat{y} {=} \frac{y {\cdot} u}{u {\cdot} u} u \qquad (\text{orthogonal projection of y onto } u)$

 $z = y - \frac{y \cdot u}{u \cdot u} u$ (component of y orthogonal to u)

Orthogonal Projections: Example

Example

Let
$$\mathbf{y} = \begin{bmatrix} -8\\ 4 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 3\\ 1 \end{bmatrix}$.
the line through $\mathbf{0}$ and \mathbf{u} .

Compute the distance from ${\boldsymbol{y}}$ to

Solution:

$$\widehat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} =$$

Distance from y to the line through 0 and u= distance from \widehat{y} to y = $\|\widehat{y}-y\|=$

Orthonormal Sets

Orthonormal Sets

A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ in \mathbf{R}^n is called an **orthonormal** set if it is an orthogonal set of unit vectors.

Orthonormal Basis

If $W = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$, then $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is an orthonormal basis for W.

Recall that **v** is a unit vector if
$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^T \mathbf{v}} = 1$$
.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Orthonormal Matrix: Example

Example

Suppose $U = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3]$ where $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal set.

$$U^{T}U = \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \mathbf{u}_{3}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

Orthogonal Matrix

It can be shown that

$$UU^T = I.$$

So

$$U^{-1} = U^T$$

(such a matrix is called an orthogonal matrix).

Jiwen He, University of Houston

Orthonormal Matrix: Theorems

Theorem (6)

An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

Theorem (7)

Let U be an $m \times n$ matrix with orthonormal columns, and let **x** and **y** be in \mathbb{R}^n . Then

a. $\|U\mathbf{x}\| = \|\mathbf{x}\|$

b.
$$(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$$

c. $(U\mathbf{x}) \cdot (U\mathbf{y}) = 0$ if and only if $\mathbf{x} \cdot \mathbf{y} = 0$.

Proof of part b: $(U\mathbf{x}) \cdot (U\mathbf{y}) =$

イロト イ押ト イヨト イヨト