ODE

Sample Midterm 3 Math 3331 (Summer 2014)

July 2, 2014

1. Find the solution of the initial-value problem

¥ =-3xr—=z
y =3z +2y+3z2
2 =2

with z(0) =1, y(0) = —1 and 2(0) = 2.

Solution In matrix form, the system is

x -3 0 —1 x
yl =13 2 3 Y
z 2 0 0 z
-3 0 —1
The eigen-pairsof A= 3 2 3 | are
2 0 0

M=-2 A=-1, N=2

v = (=1,0, D)7, vy, =(1,1,-2)", w3 =(0,1,0)".

The general solution is

If 2(0) =1, y(0) = —1 and 2(0) = 2, then

1 —1 1
1| =0 0 + Co 1 +c3
2 1 —2

We find that ¢; = —4, ¢o = —3, and ¢3 = 2. Hence the solution is

x(t) -1 1 0
yt) | = —4e7 | 0 | =3t | 1 | +2*[1] =
2(t) 1 -2 0

2. Find the solution of the initial-value problem

7= -3z
Yy = —5x + 6y — 4z
2= —br+2y

e~ 2t — 3¢t
et 4 2%
—4e7 2 4 et
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Sample Midterm 3(continued) Math 3331 (Summer 2014) July 2, 2014

with z(0) = —2, y(0) =0 and z(0) = 2.

Solution In matrix form, the system is

x -3 0 O x
yl =1-5 6 —4 Y
z -5 2 0 z
-3 0 O
The eigen-pairs of A= | =5 6 —4 | are
-5 2 0

)\1:4, )\2:—3, )\3:2

x(t) 0 1 0
yt) | =cre® [ 2] 4 e | 1| +e5e® [ 1
2(t) 1 1 1

If x(0) = —2, y(0) = 0 and z(0) = 2, then

—2 0 1 0
0 =C 2] + Co 1 + c3 1
2 1 1 1

We find that ¢; = —2, ¢o = —2, and ¢3 = 6. Hence the solution is

x(t) 0 1 0 —9e—3t
yt) | = =2 [ 2] =23 [ 1] +6e* [ 1] = [ —de* — 273 + 6e*
2(t) 1 1 1 —2e* — 2e73 + Ge*

3. Find the solution of the initial-value problem

¥ = —4x + 8y + 8z
y = —4dx + 4y + 22
2 =2z

with z(0) =1, y(0) = 0 and 2(0) = 0.

Solution In matrix form, the system is

/

T —4 8 8 x
y| =1—-4 4 2 Y
Z 0O 0 2 z
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8
The eigen-pairs of A= | —4 4
0

)\1 = 2, )\2 = 42, )\3 = —4;
v = (0, -1, 1), vy =(1-14,1,00", wvy=(1+1i1,07".

The general solution is

x(t) 0 cos 4t 4 sin 4t —cos 4t 4 sin 4t
y(t) | =cie® | =1 | +c cos 4t +c3 sin 4t
(1) 1 0 0

If x(0) =1, y(0) = 0 and z(0) = 0, then

1 0 1 -1
Ol=c|-1]+c 1] +c]| O
0 1 0 0

We find that ¢; =0, ¢o =0, and ¢3 = —1. Hence the solution is

x(t) cos 4t — sin 4t
y(t) | = —sin 4t
2(t) 0

4. Find the solution of the initial-value problem

2 =6x — 4z
y = 8x — 2y

2 =8xr—2z
with z(0) = —2, y(0) = —1 and 2(0) = 0.

Solution In matrix form, the system is

x 6 0 —4 x
yl =18 -2 0 Y
z 8§ 0 =2 z
6 0 —4
The eigen-pairsof A= |8 —2 0 | are
8 0 -2

M=-2, d=2+4+4i, Ig=2—4i
vy = (0,1,007, vy =(1+1i,2,2)7, wvy=(1-122)7".
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The general solution is

x(t) cos 4t — sin 4t cos 4t + sin 4t
yt) | = cre™ + o€t 2 cos 4t + ¢zt 2 sin 4t
2(t) 2 cos 4t 2 sin 4t

If 2(0) = —2, y(0) = —1 and 2(0) = 0, then

1
+ Co 2 +c3 0
0

We find that ¢; = —1, ¢ = 0, and ¢3 = —2. Hence the solution is

z(t) 0 cos 4t + sin 4t —2¢e%(cos 4t + sin 4t)
yt) | = —e 2| 1| —2e* 2sin 4t = | —e % —4e*sindt
2(t) 0 2sin 4t —4e? sin 4t

30 points| 5. Find the general solution of the system

' =6z — 5y + 102
Y =—x+2y—2z
Y=—r+y—=z

Solution In matrix form, the system is

/

x 6 —5 10 x
yl =1-1 2 =2 Y
z -1 1 -1 z
6 -5 10
The eigen-pairs of A= | -1 2 =2 are
-1 1 -1

M=D5 X=N=1 v = (=5 1,07, v = (11,00, wv3=(-2,0,1)".

Note that the eigenvalue Ay = 1 has geometric multiplicity 2 equal to its algebraic
multiplicity. The general solution is

z(t) -5 1 —2
yt) | =cie®™ | 1 | +eet [ 1] +ezef | O
2(t) 1 0 1
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30 points| 6. Find the general solution of the system

¥ =-2r+y—=z2

Yy =ax—3y
2 =3x — 5y

Solution In matrix form, the system is
!/

T -2 1 -1 T
yl =11 -3 0 Y
z 3 =5 0 z
-2 1 -1
The eigenvaluesof A= 1 -3 0 | are
3 =5 0
)\1:—1, )\2:)\3:—2
The eigenvalue A\; = —1 has geometric multiplicity 1, and an eigenvector is v; =
(=2, —1,1)T, leading to the solution
-2
yi(t) = e toy = Moy = et | —1
1
The eigenvalue Ay = —2 has geometric multiplicity 1, less than its algebraic multiplicity,
and an eigenvector is vy = (1,1,1)7, leading to the solution
1
ya(t) = ey = My =72 | 1
1
Note that
-2 4 =2 1 -2 1
(A=XI)P=(A+2)*=|-1 2 —1] =10 0 0
1 -2 1 0 0 0

Thus null((A — A\27)?) has dimension two, equalling its algebraic multiplicity. We pick a
vector in the nullspace of (A — A\y1)?) that is not in the nullspace of A — \o, for example,
v3 = (—1,0,1)T, leading to the solution

ys(t) = et oy = e’\zt(vg + t(A — X1 )vg)

1 0 1 -1\ /-1
—e X 0 |+t|1 -1 0 0
1 3 -5 2 1
—1—t
=e —t
1—t
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The general solution is

() 2 1 1t
y(t) | = ciyn(t) + coya(t) +csys(t) = cre™ [ =1 | e [ 1] +c3e™ —t
2(t) 1 1 1t

7. Classify the equilibrium point of the system y' = Ay. Sketch the phase portrait by hand.
(1) A= (jg 191) (2) A= (_86 _31) (3) A= (_1%)1 _45)
(4) A= (§ ‘64) (5) A = (160 :i) (6) 4= (ié‘ 140)
(7) A= (_61 ;") (8) A= (_14 _04) (9) A= (—210 —15)

Solution (1) If
—-16 9
A= (—18 11)

then the trace is T'= —5 and the deternimant is D = —14 < 0. Hence, the equilibrium
point at the origin is a saddle. Further, the characteristic polynomial is

p(A) =N —TA+D =X +5\—14
which produces eigenvalues \; = —7 and Ay = 2. Because

_ _ (9 9 _ T

leading to the exponential solution

Because
. (18 9 - T
A—)\QI—A—QI—(_lS 9)—>v2—(1,2)

leading to the exponential solution

ya(t) = vy = € (;)

The general solution is

y(t) = ciya (t) + caya(t) = cre™™ G) + cac™ G)

Solutions approach the halfline generated by c,(1,2)7 as they move forward in time, but
they approach the halfline generated by ¢;(1,1)7 as they move backward in time. A
hand sketch follows
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A

(2) If

=% 5)

then the trace is T' = 7 and the deternimant is D = 10 > 0. Further, 7% — 4D = 9 > 0,
so the equilibrium point at the origin is a nodal source. Further, the characteristic
polynomial is

pN) =X —TA+D =X —-7TA+10

which produces eigenvalues \; = 2 and Ay = 5. Because

A-MI=A-2]= (_66 _33) — v = (1,-2)7

leading to the exponential solution

Because

A—Xl=A-51= (_6 _6) — vy = (1,-1)"

leading to the exponential solution

The general solution is

y(t) = cyi(t) + coya(t) = cre® (_12) + cpe™ (—11)

Solutions emanate from the source tangent to the “slow” halfline generated by ¢ (1, —2)T
and eventually parallel the “fast” halfline generated by cy(1, —1)T as they move forward
in time. A hand sketch follows
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(3) If
—11 -5
A= ( 10 4 )
then the trace is T = —7 and the deternimant is D = 6 > 0. Further, 7? — 4D =
25 > 0, so the equilibrium point at the origin is a nodal sink. Further, the characteristic

polynomial is
pA) =N —=TA+D=XN+T7A+6

which produces eigenvalues A\ = —1 and Ay = —6. Because

-10 -5
A-NMI=A+1= ( 10 5)—>v1:(1,—2)T

leading to the exponential solution

Because
_ _ (-5 -5 _ _\T

leading to the exponential solution

The general solution is

y(t) = ciya(t) + capa(t) = cre™ (_12> e (—11>
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Solutions approach the origin tangent to the “slow” halfline generated by ¢;(1,—2)%.
As time move backward, solutions eventually parallel the “fast” halfline generated by
co(1,—1)". A hand sketch follows

(4) T

2 —4
=)
then the trace is T = —4 and the deternimant is D = 20 > 0. Further, 7% — 4D =
—64 < 0, so the equilibrium point at the origin is a spiral sink. At (1,0),

¢ 0-0)

so the motion is counterclockwise. A hand sketch follows
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6 -5
1= (o )

then the trace is 7' = 2 and the deternimant is D = 26 > 0. Further, 72 —4D = —100 <
0, so the equilibrium point at the origin is a spiral source. At (1,0),

(o =) ()= ()

so the motion is counterclockwise. A hand sketch follows

(5) It
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(6) If
(5 )

then the trace is T' = 0 and the deternimant is D = 4, so the equilibrium point at the

origin is a center. At (1,0),
—4 10\ (1\ (-4
-2 4 0]  \—-2

so the rotation is clockwise. A hand sketch follows
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i
H

(7) I

=4

then the trace is T'= 8 > 0 and the deternimant is D = 16 > 0. Further, T? — 4D =

0, so the equilibrium point at the origin is a degenerate nodal source. Further, the
characteristic polynomial is

pP(AN) =X —TA+D=X—-8\+16
which produces a single eigenvalue A = 4. Because

A—)\I:A—4I:(_21 _42) — v =(2,-1)"

leading to the exponential solution

() = Moy = ¢ (_21)

To find another solution, we must solve (A — Al)vy = v;. Start with any vector that is
not a multiple of vy, say w = (1,0)”. Then

o= (3 4)(0)(2)

Thus, let vo = w = (1,0)T. A second, independent solution is

it =) = ((5) +1 (%))
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The general solution is

y(t) = c1yi(t) + conpa(t) = cre® (_21) + coe™ ((é) +t (_21)>
— ¢t ((01 + ot) (_21) + ¢ (é))

Solutions emanate from the origin tangent to the halfline generated by c¢;(2, —1)7 and
eventually parallel the halfline as they move forward in time. At (1,0),

6 4 1\ (6
-1 2 0/ \-—1
so the rotation is clockwise. A hand sketch follows

(8) If
—4 —4
=)
then the trace is T = —4 < 0 and the deternimant is D = 4. Further, 7? — 4D = 0, so

the equilibrium point at the origin is a degenerate nodal sink. Further, the characteristic

polynomial is
pPA) =N —TA+D =X +4\+4

which produces a single eigenvalue A = —2. Because

AN =A+2]= <_12 _24) — v =(2,-1)T

leading to the exponential solution
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To find another solution, we must solve (A — Al)vy = v;. Start with any vector that is
not a multiple of vy, say w = (1,0)7. Then

-2 —4 1 —2

=7 5) (o) - (V) -
Thus, let v, = —w = (—1,0)T. A second, independent solution is

Yo (t) = eM(vy + tvy) = e * ((Bl) +t (_21>>
The general solution is

ot [ 2 —or (1 2
) = (@) + e =are ( ) v () 41 (2))
_ 2 -1
=2 ((c1 + cot) (_1> + ¢ < 0 ))

Solutions decay to the origin tangent to the halfline generated by c¢;(2,—1)T. As time
marches backward, the solutions also turn parallel to the halfline. At (1,0),

-2 —4 1\ (-2
1 2 0/ \1
so the rotation is counterclockwise. A hand sketch follows

§ i
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then the trace is T'= —3 < 0 and the deternimant is D = 0. Thus, this degenerate case
lies on the horizontal axis in the trace-determinant plane, separating the saddles from
the nodal sinks. Further, the characteristic polynomial is

p(A) =X —TA+ D =)\ +3\

which produces eigenvalues \; = 0 and Ay = —3. Because

— — 2 1 _ T
A-NI=A= (_10 _5) — v =(1,-2)

leading to the exponential solution

i (t) = Mty = (_12)

which produces a whole line of equilibrium points. Everything on the line generated by
vy is an equilibrijm point. Because

) 1
A—/\QIZA+3]: (_10 _2) — Uy = (1,—5)T

leading to the exponential solution

The general solution is

y(t) = an(t) + cp(t) = a (—12) e <—15)

Each Solution in this family is the sum of a fixed multiple of (1, —2)7 and a decaying
multiple of (1,—5)7. Thus, as ¢ — oo, solutions move in lines parallel to (1,—5)%,
decaying into the line of equilibrium. A hand sketch follows
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