Math 3331 Differential Equations
2.5 Mixing Problems

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math3331
2.5 Mixing Problems

- Balance Law
- Mixture of Water and Salt
 - Example 5.1
 - Example 5.3
Solution of a mixture of water and salt

\(x(t) \): amount of salt
\(V(t) \): volume of the solution
\(c(t) \): concentration of salt

\[c(t) = \frac{x(t)}{V(t)} \]

Balance Law

\[\frac{d}{dt} \left(x(t) \right) = \text{rate in} - \text{rate out} \]

rate = flow rate \(\times \) concentration
Example 1

See Text, Example 2.5.1

\(V(t) = 100 \text{ gal}, \text{ kept constant} \)

concentration in = 2 lb/gal

flow rate in = 3 gal/min

flow rate out = flow rate in

\[\Rightarrow c(t) = \frac{x(t)}{100} \text{ lb/gal} \]

\[\Rightarrow \text{ rate in } = 6 \text{ lb/min} \]

\[\Rightarrow \text{ rate out } = 3x(t)/100 \text{ lb/min} \]

Balance Law

\[\frac{dx}{dt} = 6 - 3x/100 \]
Example 2

See Text, Example 2.5.2

concentration in = 1.5 lb/gal
flow rate in = 3 gal/min
flow rate out = 1 gal/min

\[V(0) = 300 \text{ gal} \]

\[\Rightarrow V(t) = 300 + 2t \text{ lb/gal} \]

\[\Rightarrow c(t) = \frac{x(t)}{(300 + 2t)} \text{ lb/gal} \]

\[\Rightarrow \text{rate in } = 4.5 \text{ lb/min} \]

\[\Rightarrow \text{rate out } = \frac{x(t)}{(300 + 2t)} \text{ lb/min} \]

Balance Law

\[\frac{dx}{dt} = 4.5 - \frac{x}{(300 + 2t)} \]