Math 3331 Differential Equations

5.1 Definition of the Laplace Transform

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/math3331

5.1 Definition of the Laplace Transform

- Use of the Laplace Transform
 - DEs with constant coefficients
 - Discontinuous forcings
- Definition of the Laplace Transform
- Examples

•
$$\mathcal{L}(1)(s) = 1/s, s > 0$$

•
$$\mathcal{L}(e^{at})(s) = 1/s - a$$
, $s > a$

•
$$\mathcal{L}(t)(s) = 1/s^2$$

•
$$\mathcal{L}(t^n)(s) = n!/s^{n+1}$$

•
$$\mathcal{L}(\sin at)(s)$$
 and $\mathcal{L}(\cos at)(s)$

- $\mathcal{L}(f)(s)$, f being discontinous
- Piecewise Continuous Functions
- Functions of Exponential Order
- Existence of the Laplace Transform

Use of the Laplace Transform

- Technique for solving linear DEs with constant coefficients
- Useful for discontinuous forcings

Definition of the Laplace Transform

Def.: Given a real or complex function f(t), the Laplace (\mathcal{L}) transform of f is the following function of s:

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$
$$\equiv \lim_{T \to \infty} \int_0^T e^{-st} f(t) dt$$

Notation:

$$F(s) = \mathcal{L}(f)(s) = \mathcal{L}\{f(t)\}(s)$$

Example 1: $\mathcal{L}(1)(s) = 1/s$, s > 0

$$\mathcal{L}(1)(s) = \int_0^\infty 1 \, e^{-st} \, dt = \lim_{T \to \infty} \int_0^T e^{-st} \, dt = \lim_{T \to \infty} \left[-\frac{1}{s} e^{-st} \right]_{t=0}^T$$
$$= \lim_{T \to \infty} \left[-\frac{1}{s} e^{-sT} + \frac{1}{s} \right] = \frac{1}{s} \quad \text{for } s > 0$$

Example 2: $\mathcal{L}(e^{at})(s) = 1/s - a$, s > a

$$\mathcal{L}(e^{at})(s) = \int_0^\infty e^{at} e^{-st} dt = \lim_{T \to \infty} \int_0^T e^{-(s-a)t} dt$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s-a} e^{-(s-a)t} \Big|_{t=0}^T \right]$$

$$= \lim_{T \to \infty} \left[-\frac{1}{s-a} e^{-(s-a)T} + \frac{1}{s-a} \right] = \frac{1}{s-a} \quad \text{for } s > a$$

Example 3: $\mathcal{L}(t)(s) = 1/s^2$

$$\mathcal{L}(t)(s) = \int_0^\infty t \, e^{-st} \, dt$$

$$= \lim_{T \to \infty} \int_0^T t \, e^{-st} \, dt$$

$$= \lim_{T \to \infty} \left(-\frac{t}{s} e^{-st} - \frac{1}{s^2} e^{-st} \right) \Big|_{t=0}^T$$

$$= \lim_{T \to \infty} \left(-\frac{T}{s} e^{-sT} - \frac{1}{s^2} e^{-sT} + \frac{1}{s^2} \right) = \frac{1}{s^2}$$

Integration by parts

$$\int t e^{-st} dt$$

$$= -\frac{1}{s} \left(t e^{-st} - \int e^{-st} dt \right)$$

$$= -\frac{t}{s} e^{-st} - \frac{1}{s^2} e^{-st}$$

Example 4: $\mathcal{L}(t^n)(s) = n!/s^{n+1}$

$$\mathcal{L}(t^n)(s) = \int_0^\infty t^n \, e^{-st} \, dt$$

$$= \lim_{T \to \infty} \int_0^T t^n e^{-st} dt$$

$$= \lim_{T \to \infty} \left(-\frac{t^n}{s} e^{-st} - \dots - \frac{n!}{s^{n+1}} e^{-st} \right) \Big|_{t=0}^T$$

$$= \lim_{T \to \infty} \left(-\frac{T^n}{s} e^{-sT} - \dots - \frac{n!}{s^{n+1}} e^{-sT} + \frac{n!}{s^{n+1}} \right) = \dots$$

$$=\frac{n!}{s^{n+1}}$$

Integration by parts

$$\int t^n e^{-st} dt$$

$$= -\frac{1}{s}t^n e^{-st}$$

$$+\frac{n}{s}\int t^{n-1}e^{-st}\,dt$$

$$=-\frac{t^n}{s}e^{-st}-\cdots-\frac{n!}{s^{n+1}}e^{-st}$$

Example 5: $\mathcal{L}(\sin at)(s)$ and $\mathcal{L}(\cos at)(s)$

$$\mathcal{L}(\sin at)(s) = \int_0^\infty \sin at \ e^{-st} \ dt = \dots = \frac{a}{s^2 + a^2}$$

$$\mathcal{L}(\cos at)(s) = \int_0^\infty \cos at \, e^{-st} \, dt = \cdots \frac{s}{s^2 + a^2}$$

Example 6: $\mathcal{L}(f)(s)$, f being discontinous

Compute the Laplace transform of the step function

$$f(t) = \left\{ egin{array}{ll} 1, & 0 \leq t < 1 \ 0, & t \geq 1 \end{array}
ight.$$

$$\mathcal{L}(f)(s) = \int_0^1 1 e^{-st} dt = -\frac{1}{s} e^{-st} \Big|_{t=0}^1$$
$$= -\frac{1}{s} e^{-s} + \frac{1}{s}.$$

Piecewise Continuous Functions

Def.: f(t) is piecewise continuous if

- in any finite interval 0 < t < T there are at most finitely many discontinuities
- at any point of discontinuity t_d the left and right limits f_{\mp} exist:

$$f_{-}(t_d) = \lim_{t \to t_d -} f(t), \ f_{+}(t_d) = \lim_{t \to t_d +} f(t)$$

Ex.:
$$f(t) = \begin{cases} 0 & \text{if } 0 \le t < 1 \\ e^{t-1} & \text{if } t \ge 1 \end{cases}$$
 has a discontinuity at $t_d = 1$:

$$f_{-}(1) = 0, f_{+}(1) = 1$$

Functions of Exponential Order

Def.: f(t) is of exponential order if there are constants C, a s.t.

$$|f(t)| \le Ce^{at}$$
 for all t

Meaning: f(t) grows at most exponentially if $t \to \infty$

 $Ex.: e^{t^2}$ is *not* of exponential order

 $Ex.: e^{10,000t}$ is of exponential order

Existence of the Laplace Transform

Thm.: If f(t) is piecewise continuous in $0 \le t < \infty$ and of exponential order, then $\mathcal{L}(f)(s)$ exists for s > a.

