Math 3331 Differential Equations

9.1 Constant Coefficients Linear Systems Overview of Technique

Jiwen He

Department of Mathematics, University of Houston

 ${\tt jiwenhe@math.uh.edu} \\ {\tt math.uh.edu} / {\sim} {\tt jiwenhe/math3331} \\$

9.1 Constant Coefficients Linear Systems: Overview of Technique

- Homogeneous Systems
 - Eigenvalues and Eigenvectors
 - Solution of Homogeneous System
- Finding Eigenvalues
 - Characteristic Polynomials
 - Finding Eigenvalues and Eigenvectors
 - Distinct Eigenvalues and Independent Eigenvectors
- Fundamental Set of Solutions
- Complications
- Worked out Examples from Exercises:
 - 5, 11, 27, 29, 36, 39, 49, 51

Homogeneous System

Homogeneous system:

$$\mathbf{x}' = A\mathbf{x} \tag{1}$$

A: constant $n \times n$ -matrix

If
$$n = 1$$
: $x' = ax \Rightarrow x(t) = Ce^{at}$

Try exponential form for (1):

$$\mathbf{x}(t) = e^{\lambda t}\mathbf{v}$$
 (v : constant vector)

Sub
$$\mathbf{x}(t)$$
 in $(1) \Rightarrow$

$$\mathbf{x}'(t) = \lambda e^{\lambda t} \mathbf{v} = A\mathbf{x}(t) = Ae^{\lambda t} \mathbf{v}$$
$$\Rightarrow \lambda \mathbf{v} = A\mathbf{v}$$

Eigenvalues and Eigenvectors

Def.: A number λ is an eigenvalue of A if there is a vector $\mathbf{v} \neq \mathbf{0}$ such that

$$A\mathbf{v} = \lambda \mathbf{v} \tag{2}$$

If λ is an eigenvalue, then any $v \neq 0$ satisfying (2) is called an eigenvector for λ .

Solution of Homogeneous System

Homogeneous system:

$$\mathbf{x}' = A\mathbf{x} \tag{1}$$

A: constant $n \times n$ -matrix

Thm.: If λ is eigenvalue of A and \mathbf{v} is eigenvector for λ , then $\mathbf{x}(t) = e^{\lambda t}\mathbf{v}$ is a solution of (1).

Characteristic Polynomials

Def.: A number λ is an eigenvalue of A if there is a vector $\mathbf{v} \neq \mathbf{0}$ such that

$$A\mathbf{v} = \lambda \mathbf{v} \tag{2}$$

If λ is an eigenvalue, then any $\mathbf{v} \neq \mathbf{0}$ satisfying (2) is called an eigenvector for λ .

Rewrite (2) (using $\mathbf{v} = I\mathbf{v}$): $(A - \lambda I)\mathbf{v} = 0$ Since $\mathbf{v} \neq 0 \Rightarrow \det(A - \lambda I) = 0$

Def.: $p(\lambda) = \det(A - \lambda I)$ = characteristic polynomial

Note: the degree of $p(\lambda)$ is n. $\Rightarrow p(\lambda)$ has n roots (if counted with multiplicities)

Finding Eigenvalues and Eigenvectors

Thm.: The eigenvalues of A are the roots of

$$p(\lambda) = \det(A - \lambda I) = 0 \quad (3)$$

If λ is a root of (3), then any $\mathbf{v} \neq \mathbf{0}$ in $\text{null}(A - \lambda I)$ is an eigenvector for λ .

Def.: If λ is an eigenvalue of A, then $\text{null}(A - \lambda I)$ is called the eigenspace of λ .

Distinct Eigenvalues and Independent Eigenvectors

Thm.: Eigenvectors for distinct eigenvalues are linearly independent.

Fundamental Set of Solutions

Consequence:

If $p(\lambda)$ has n distinct real roots

$$\lambda_1,\ldots,\lambda_n$$

then A has n linearly independent eigenvectors

$$\mathbf{v}_1, \dots, \mathbf{v}_n$$

$$\Rightarrow e^{\lambda_1 t} \mathbf{v}_1, \dots, e^{\lambda_n t} \mathbf{v}_n$$

is fundamental set of solutions.

Complications

Complications

- complex eigenvalues
- repeated roots

Ex. 9.1.5: Find $p(\lambda)$ and eigenvalues "by hand" for $A = \begin{bmatrix} 5 & 3 \\ -6 & -4 \end{bmatrix}$

This is a 2×2-matrix with
$$T=1$$
, $D=-2 \Rightarrow p(\lambda)=\lambda^2-\lambda-2=(\lambda+1)(\lambda-2)$ \Rightarrow Eigenvalues $\lambda_1=-1$, $\lambda_2=2$.

Ex. 9.1.11: Find $p(\lambda)$ and eigenvalues "by hand" for $A = \begin{bmatrix} -1 & -4 & -2 \\ 0 & 1 & 1 \\ -6 & -12 & 2 \end{bmatrix}$

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -1 - \lambda & -4 & -2 \\ 0 & 1 - \lambda & 1 \\ -6 & -12 & 2 - \lambda \end{vmatrix}$$

$$= (-1)^{2+2} (1 - \lambda) \begin{vmatrix} -1 - \lambda & -2 \\ -6 & 2 - \lambda \end{vmatrix} + (-1)^{2+3} 1 \begin{vmatrix} -1 - \lambda & -4 \\ -6 & -12 \end{vmatrix}$$

$$= (1 - \lambda) [(-1 - \lambda)(2 - \lambda) - 12] - [(-1 - \lambda)(-12) - 24]$$

$$= -(1 - \lambda)(-\lambda^2 + \lambda + 14) + 12(1 - \lambda)$$

$$= (1 - \lambda)(\lambda^2 - \lambda - 2)$$

$$= (1 - \lambda)(\lambda + 1)(\lambda - 2)$$

 \Rightarrow Eigenvalues 1, -1, 2

Ex. 9.1.27: Find fundamental solution set "by hand" for y' = Ay if

$$A = \begin{bmatrix} -3 & 0 & 2 \\ 6 & 3 & -12 \\ 2 & 2 & -6 \end{bmatrix}$$

$$p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -3 - \lambda & 0 & 2 \\ 6 & 3 - \lambda & -12 \\ 2 & 2 & -6 - \lambda \end{vmatrix}$$
$$= (-1)^{1+1}(-3 - \lambda) \begin{vmatrix} 3 - \lambda & -12 \\ 2 & -6 - \lambda \end{vmatrix} + (-1)^{1+3}2 \begin{vmatrix} 6 & 3 - \lambda \\ 2 & 2 \end{vmatrix}$$
$$= -(3 + \lambda)[(3 - \lambda)(-6 - \lambda) + 24] + 2[12 - 2(3 - \lambda)]$$
$$= -(3 + \lambda)(\lambda^2 + 3\lambda + 6) + 4(\lambda + 3) = -(\lambda + 3)(\lambda^2 + 3\lambda + 2)$$
$$= -(\lambda + 3)(\lambda + 1)(\lambda + 2)$$

 \Rightarrow eigenvalues $\lambda_1 = -1$, $\lambda_2 = -2$, $\lambda_3 = -3$. Find eigenvectors:

1.
$$\lambda_1 = -1$$
:

$$A+I = \begin{bmatrix} -2 & 0 & 2 \\ 6 & 4 & -12 \\ 2 & 2 & -5 \end{bmatrix} \xrightarrow{R3(1,-1/2)} \begin{bmatrix} 1 & 0 & -1 \\ 6 & 4 & -12 \\ 2 & 2 & -5 \end{bmatrix}$$

$$\begin{array}{c}
R1(2,1,-6),R1(3,1,-2) \\
\longrightarrow \\
\longrightarrow
\end{array}
\left[
\begin{array}{cccc}
1 & 0 & -1 \\
0 & 4 & -6 \\
0 & 2 & -3
\end{array}
\right] \rightarrow \left[
\begin{array}{cccc}
1 & 0 & -1 \\
0 & 2 & -3 \\
0 & 0 & 0
\end{array}
\right]$$

Set free variable $y_3 = 2 \Rightarrow y_2 = 3$, $y_1 = 2 \Rightarrow$ eigenvector $\mathbf{v}_1 = [2, 3, 2]^T$.

2.
$$\lambda_2 = -2$$
:

$$A + 2I = \begin{bmatrix} -1 & 0 & 2 \\ 6 & 5 & -12 \\ 2 & 2 & -4 \end{bmatrix} \xrightarrow{R1(2,1,6),R1(3,1,2)} \begin{bmatrix} -1 & 0 & 2 \\ 0 & 5 & 0 \\ 0 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Set $y_3 = 1 \Rightarrow y_2 = 0$, $y_1 = 2 \Rightarrow$ eigenvector $v_2 = [2, 0, 1]^T$

3. $\lambda_3 = -3$:

$$A + 3I = \begin{bmatrix} 0 & 0 & 2 \\ 6 & 6 & -12 \\ 2 & 2 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Set free variable $y_2 = 1 \Rightarrow y_3 = 0$, $y_1 = -1 \Rightarrow$ eigenvector $\mathbf{v}_3 = [-1, 1, 0]^T$.

⇒ fundamental solution set:

$$\mathbf{y}_1(t) = e^{-t} \begin{bmatrix} 2\\3\\2 \end{bmatrix}, \mathbf{y}_2(t) = e^{-2t} \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \mathbf{y}_3(t) = e^{-3t} \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$

Note: Associated fundamental matrix is $Y(t) = \begin{bmatrix} 2e^{-t} & 2e^{-2t} & -e^{-3t} \\ 3e^{-t} & 0 & e^{-3t} \\ 2e^{-t} & e^{-2t} & 0 \end{bmatrix}$

General solution: $y(t) = c_1y_1(t) + c_2y_2(t) + c_3y_3(t) = Y(t)c$; $c = [c_1, c_2, c_3]^T$

Ex. 9.1.36: Find eigenvalues and eigenvectors using a computer for

$$A = \begin{bmatrix} -6 & 5 & -9 & 10\\ 10 & -7 & 13 & -16\\ 4 & -4 & 8 & -8\\ -5 & 3 & -5 & 7 \end{bmatrix}$$

1. Numerical computation via Matlab's poly, roots, and null commands:

The output of *poly* is a row vector whose entries are approximated values for the coefficients of the characteristic polynomial:

$$p(\lambda) \approx 1.0000 \times \lambda^4 - 2.0000 \times \lambda^3 - 1.0000 \times \lambda^2 + 2.0000 \times \lambda - 0.0000$$

Find the roots of the characteristic polynomial:

```
>> evals=roots(cpol)
evals =
-1.0000
2.0000
1.0000
0.0000
```

So the eigenvalues (roots of $p(\lambda)$) are approximately -1.0000, 2.0000, 1.0000, 0.000 They can be accessed via *evals*(1), *evals*(2) etc.

Now compute bases for the nullspaces of the eigenvalues using the *null*-command:

```
>> v1=null(A-evals(1)*eye(4))
v1 =
-0.5774
0.5774
0.0000
-0.5774
```

(The $n \times n$ identity matrix is denoted in Matlab by eye(n) – here n = 4.) Analogously one can compute the other three eigenvectors.

2. Symbolic computation using Matlab's poly, factor or solve, and null commands:

poly and null work also for symbolically defined matrices. The roots command works only for numerically defined vectors. To find roots of a symbolically defined polynomial, use the commands factor or solve.

```
>> sym_A=sym(A);sym_cpol=poly(sym_A)
sym_cpol =
x^4-2*x^3-x^2+2*x
```

Note that here the output is a symbolic polynomial expression with (default) variable \boldsymbol{x} .

You can find the eigenvalues with the factor command:

```
>> factor(sym_cpol) ans = x*(x-1)*(x-2)*(x+1) So the exact eigenvalues are \lambda_1=0, \lambda_2=1, \lambda_3=2, \lambda_4=-1. Alternatively you can find them using solve: >> sym_evals=solve(sym_cpol) sym_evals = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}
```



```
Now find eigenvectors:
```

```
>> sym_v1=null(sym_A-sym_evals(1)*eye(4))
sym_v1 =
[ 1]
[ 1]
[ 1]
[ 1]
```

hence $\mathbf{v}_1 = [1, 1, 1, 1]^T$. Analogously one finds the eigenvectors for $\lambda_2, \lambda_3, \lambda_4$:

$$\mathbf{v}_2 = [0, -2, 0, 1]^{\mathit{T}}, \; \mathbf{v}_3 = [-1, 0, 2, 1]^{\mathit{T}}, \; \mathbf{v}_4 = [1, -1, 0, 1]^{\mathit{T}}.$$

Ex. 9.1.29: Find eigenvalues and eigenvectors using a computer for

$$A = \left[\begin{array}{rrr} -7 & 2 & 10 \\ 0 & 1 & 0 \\ -5 & 2 & 8 \end{array} \right].$$

Eigenvalues and eigenvectors can be computed directly in Matlab with the \emph{eig} command. Outputs:

V: matrix whose columns are eigenvectors

D: diagonal matrix whose diagonal entries are eigenvalues

Without specification, outputs are floating point numbers:

Symbolic computation yields exact values if available:

Hence
$$\lambda_1=1,\,\mathbf{v}_1=\left[\begin{array}{c}1\\-1\\1\end{array}\right],\ \lambda_2=-2,\,\mathbf{v}_2=\left[\begin{array}{c}2\\0\\1\end{array}\right],\ \lambda_3=3,\,\mathbf{v}_3=\left[\begin{array}{c}1\\0\\1\end{array}\right]$$

Ex. 9.1.39: Find fundamental solution set via computer for y' = Ay if

$$A = \begin{bmatrix} 20 & -34 & -10 \\ 12 & -21 & -5 \\ -2 & 4 & -2 \end{bmatrix}$$

Editing A in Matlab and applying Matlab's eig command to sym(A) yields the following eigenvalues and eigenvectors:

$$\lambda_1 = -4$$
, $\mathbf{v}_1 = [-1, -1, 1]^T$, $\lambda_2 = -2$, $\mathbf{v}_2 = [2, 1, 1]^T$, $\lambda_3 = 3$, $\mathbf{v}_3 = [2, 1, 0]^T$ \Rightarrow fundamental solution set:

$$\mathbf{y}_1(t) = e^{-4t}[-1, -1, 1]^T, \ \mathbf{y}_2(t) = e^{-2t}[2, 1, 1]^T, \ \mathbf{y}_3(t) = e^{3t}[2, 1, 0]^T$$

Exercise 9.1.49(a)

Ex. 9.1.49(i): Find determinant and eigenvalues of $A = \begin{bmatrix} 6 & -8 \\ 4 & -6 \end{bmatrix}$ via computer

Describe any relationship between eigenvalues and determinant. No computer necessary to find $\det(A)=-4$. Eigenvalues (using Matlab): $\lambda_1=2,\,\lambda_2=-2$, hence $\lambda_1\lambda_2=-4=\det(A)$.

Exercise 9.1.51(a)

Ex. 9.1.51(i): Find eigenvalues of
$$A = \begin{bmatrix} 2 & 3 \\ 0 & -4 \end{bmatrix}$$
 via computer.

Describe any relationship between eigenvalues and triangular structure of A. Matlab \rightarrow eigenvalues $\lambda_1=2,\,\lambda_2=-4$. These are the diagonal entries of A.

Thm.: The eigenvalues of a lower or upper triangular matrix are the diagonal entries.

