2.5 Independence
Definition of independent events

- **Definition:** Two events A and B are independent if

 $$P(A|B) = P(A)$$

 and are dependent otherwise.

 - The equality in the definition implies the following equality (and vice versa)

 $$P(B|A) = P(B)$$

 - It is also straightforward to show that if A and B are independent, then so are the following pairs of events: (1) A' and B, (2) A and B', and (3) A' and B'.

- **2.31: Tossing a die** $A = \{2, 4, 6\}$, $B = \{1, 2, 3\}$, and $C = \{1, 2, 3, 4\}$. We have

 $$P(A) = \frac{1}{2}, \quad P(A|B) = \frac{1}{3}, \quad P(A|C) = \frac{1}{2}.$$

 That is, A and B are dependent, whereas A and C are independent.

- **2.32** Let A and B be mutually exclusive with $P(A) > 0$. Since $A \cap B = \emptyset$, then $P(A|B) = 0 \neq P(A)$, so A and B can not be independent. For example, $A = \{\text{carisblue}\}$ and $B = \{\text{carisred}\}$, A and B are mutually exclusive, then dependent.
When A and B are Independent

- **Proposition:** A and B are independent if and only if

$$P(A \cap B) = P(A) \cdot P(B)$$

- **Proof:**

$$P(A \cap B) = P(A|B) \cdot P(B) = P(A) \cdot P(B)$$

where the second equality is valid if and only if A and B are independent.

- **Definition of the independence of more than two events:** Events A_1, \ldots, A_n are *mutually independent* if for every k ($k = 2, 3, \ldots, n$) and every subset of indices i_1, \ldots, i_k,

$$P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$$

- **2.35:** Let A_i denote the event that the lifetime of cell i exceeds t_0 ($i = 1, \ldots, 6$). We assume that A_i’s are independent events and that $P(A_i) = .9$ for every i since the cells are identical.

$$P(\text{system lifetime exceeds } t_0) = P[(A_1 \cap A_2 \cap A_3) \cup (A_4 \cap A_5 \cap A_6)]$$

$$= P(A_1 \cap A_2 \cap A_3) + P(A_4 \cap A_5 \cap A_6)$$

$$- P[(A_1 \cap A_2 \cap A_3) \cap (A_4 \cap A_5 \cap A_6)]$$

$$= (.9)(.9)(.9) + (.9)(.9)(.9) - (.9)(.9)(.9)(.9)(.9)(.9) = .927$$