Law of Rare Events.

Sparse Sampling: The Poisson Distribution

* Sparse Sampling: counting rare events.

* Examples:
 - Count the meteorites striking Houston during a time period of length τ (= 10^6 years).
 - Count the errors (typographical) in a novel of 500 pages.
 - Count the accidents in a stretch of road during a fixed period.

2 Counting the meteorites for a period $[0, t]$:
 - Divide the period $[0, t]$ into n intervals.
 - Assume that n is sufficiently large so that the intervals are so small that the chance of two or more strikes in the same interval is negligible.
 - Assume that strikes in different intervals are independent, and that the chance of a strike is the same for each of the n intervals, p. Say
\(X = \text{total number of strikes in the } n \text{ intervals} \)

\(\text{the number of successes in a Bernoulli trials with distribution} \)

\[\varphi(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, 2, \ldots, n. \]

\[\text{Binomial distribution.} \]

- Note that if \(p \) is the chance of a strike in one minute, then the chance of a strike in two minutes should be \(2p \), and so on.

- This amounts to the assumption that \(np/\tau \) is a constant, which we call \(\lambda \), a rate (per unit time) or (per unit area). Such that \(np = \lambda \tau \)

- Note that \(p \) decreases when \(n \) increases or vice versa.

Proposition: Suppose that in \(\varphi(k; n, p) \), we let \(n \to \infty \)
and \(p \to \lambda \) in such a way that \(np = \lambda \tau \). Then

Proof:
\[
\lim_{n \to \infty} \binom{n}{k} p^k (1-p)^{n-k} = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}
\]
as \(n \to \infty \)

\[
(1 - \frac{\lambda \tau}{n})^{-k} \to 1
\]

\[
(1 - \frac{\lambda \tau}{n})^n \to e^{-\lambda \tau}
\]

\[
P(k \text{ strikes in } \tau + 1) = \binom{n}{k} p^k (1-p)^{n-k}
\]

\[
(1 - \frac{\lambda \tau}{n})^{-k} \to 1
\]

\[
(1 - \frac{\lambda \tau}{n})^n \to e^{-\lambda \tau}
\]

\[
\to e^{-\lambda \tau} \frac{(\lambda \tau)^k}{k!}, \quad \text{as } k \to \infty
\]
a) Check that the Poisson distribution is a proper probability distribution.

\[e^{-\lambda t} \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!} = e^{-\lambda t} e^{\lambda t} = 1 \]

Note that \(e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \).

b) Approximation: An Other Look.

Example: Polling voters.

Given \(n = r + q \) voters altogether

with \(n : \text{aeds} \)

\(q : \text{queens} \)

Sampling without replacement.

\(n : \text{sample size} \)

\(\mathbb{A}_k : \text{event that the sample includes} \)

\(k : \text{queens} \)

\[P(\mathbb{A}_k) = \frac{\binom{q}{k} \binom{n-k}{r-k}}{\binom{n}{r}} : \text{hypergeometric distribution} \]

Assume that \(n, q, \) and \(r \) are very large compared with \(k \) and \(n \) (typically \(n \geq 1000 \), while \(n \) and \(q \geq 100 \)). We set

\(p = \frac{q}{n} \), \(q = 1 - p = \frac{r}{n} \)

For fixed \(n \) and \(k \), as \(n, q, r \) becomes increasingly large,
\[P(A_k) = \frac{\left(\begin{array}{c} g-k+1 \\ h \end{array} \right)}{h!} \cdot \frac{\left(\begin{array}{c} v-n+k+1 \\ n-h \end{array} \right)}{(n-h)!} \]

\[\sqrt{\left(\frac{v}{v} \right) \cdots \left(\frac{v-u+1}{v} \right)} \]

\[= \frac{n!}{h! (n-h)!} \left(\frac{g}{v} \right) \cdots \left(\frac{g-k+1}{v} \right) \cdot \left(\frac{v}{v} \right) \cdots \left(\frac{v-u+k+1}{v} \right) \]

As \(u \to 0 \)

\[\frac{g}{v}, \frac{g-1}{v}, \ldots, \frac{g-k+1}{v} \to p \]

\[\frac{v}{v}, \frac{v-1}{v}, \ldots, \frac{v-u+k+1}{v} \to g \]

\[\frac{v}{v}, \frac{v-1}{v}, \ldots, \frac{v-u}{v} \to 1 \]

Then

\[P(A_k) \to \left(\begin{array}{c} n \end{array} \right) \cdot p^h \cdot (1-p)^{n-h} \]

As \(n \to \infty \), if \(g \) is very small, hence \(p \), we have \(P(A_k) \ll \frac{v}{v} \).

If \(g \) is very small, hence \(p \), we must increase \(n \).