
                Preparat ion for the Final

Basic Set of Problems that you should be able to do:

      -   all problems on your tests (1- 3 and their  samples)

      -  ex tra practice problems in this documents.

The final will be a mix  of problems like ones on Basic Set of 
Problems.
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Figure 1: Plot of f (x). 

3.1 Part A 

Consider the following quasi-linear PDE, 

∂u ∂u 
+ (1 +  u) = 0, u (x, 0) = f (x)

∂t ∂x 

where the initial condition is   1,  x  <  −1    
f (x) =  

1, |x| > 1 2 +  x, −1 ≤ x ≤ 0 
= 

2 − |x| , |x| ≤ 1  2 − x,	 0 < x  ≤ 1    
1,  x  >  1 

1. [3 points] Sketch f (x) vs.  x.	 Solution: See Figure 1. 

2. [6 points] Find the parametric solution. First write down the relevant ODEs 

for dx/dr, dt/dr, du/dr. Please take the initial conditions t = 0  and  x = s at r = 0.  

What is the initial condition (i.e. at r = 0)  for  u? Solve  for  t, u and x (in that order) 

as functions of r, s. 

Solution: We can write the PDE as 

∂u ∂u 
(1, 1 +  u, 0) · , , −1 = 0  

∂t ∂x 

Thus the parametric solution is defined by the ODEs 

dt dx	 du 
= 1, = 1  +  u, = 0  

dr dr	 dr 

with initial conditions at r = 0,  

t = 0, x = s, u = u (x, 0) = u (s, 0) = f (s) 
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Integrating the ODEs and imposing the ICs gives 

t = r 

u = f (s) 

x = (1  +  f (s)) r + s = (1  +  f (s)) t + s 

3. [5 points] At what time ts and position xs does a shock first form? Hint: you 

might need to consider negative values of f � (s). 

Solution: The Jacobian is 

∂ (x, t) xr xs ∂x ∂t ∂x ∂t 
J = = det  = − = 0  − (f � (s) r + 1)  =  − (f � (s) t + 1)  

∂ (r, s) tr ts ∂r ∂s ∂s ∂r 

Shocks occur (the solution breaks down) where J = 0, i.e. where 

1 
t = − 

f � (s) 

The first shock occurs at 

1 1 
ts = min  − = − = 1  

f � (s) min f � (s) 

where min f � (s) =  −1. Since f � (1/2) = −1, the s = 1/2 characteristic can be used 

to find the shock location at t = ts = 1,  ( ( )) ( ( )) 
1 1 1 1 

xs = 1 +  f 1 +  = 1 + 2 − 1 +  = 3. 
2 2 2 2 

4. [6 points] Write down x in terms of t, s and f (s). For each of s = −1, 0, 1, 

write down x as a function of t and  plot it in the  xt-plane up to the shock time t = ts 
you found in 3. Put all three curves in the same plot. Label where the shock occurs. 

You have just plotted the three important characteristics. 

Solution: Note that the s = −1, 0, 1 characteristics are given by 

s = −1 :  x = (1  +  f (−1)) t − 1 =  2t − 1 

s = 0  :  x = (1  +  f (0)) t + 0  =  3t 

s = 1  :  x = (1  +  f (1)) t + 1  =  2t + 1  

These are plotted in Figure 2. 

5. [4.5 points] Fill in the tables below: 

s = −1 0 1 
1 

t = u = 1 2 1 
2 

x = 0 2 

3 

3
2 
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Figure 2: Plot of characteristics for question 4. 
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Figure 3: Plot of u(x, t0) for part A for t0 = 0,  0.5 and  1.  
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s = −1 0 1 

t = ts = 1  u = 1 2 1 

x = 1 3 3 

5. [3 points] Plot the three points (x, u) from the table for t = 1/2, in the xu-plane 

and connect the dots.	 You have just plotted u (x, t0) at  t0 = 1/2. 

Solution: See the middle plot in Figure 3. 

6.	 [3 points] Plot the three points (x, u) in the table for t = ts, in  the  xu-plane 

and connect the dots. Label the shock. You have just plotted u (x, ts). 

Solution: See the bottom plot in Figure 3. 

3.2 Part B 

We’re going to do questions 2-6 over again, for a VERY similar PDE, 

∂u ∂u 
+ (1  − u) = 0, u (x, 0) = f (x) . 

∂t ∂x 

The only difference between this PDE and the one in part A is the (1 − u) instead of 

(1 + u). The initial condition is the SAME as part A, 

  1,  x  <  −1    
f (x) =  

1, |x| > 1 2 +  x, −1 ≤ x ≤ 0 
= 

2 − |x| , |x| ≤ 1  2 − x, 0 < x  ≤ 1    
1,  x  >  1 

7. [6 points] Find the parametric solution. First write down the relevant ODEs 

for dx/dr, dt/dr, du/dr. Please take the initial conditions t = 0  and  x = s at r = 0.  

What is the initial condition (i.e. at r = 0)  for  u? Solve  for  t, u and x (in that order) 

as functions of r, s. 

Solution: We can write the PDE as 

∂u ∂u 
(1, 1 − u, 0) · , , −1 = 0  

∂t ∂x 

Thus the parametric solution is defined by the ODEs 

dt dx	 du 
= 1, = 1  − u, = 0  

dr dr	 dr 

with initial conditions at r = 0,  

t = 0, x = s, u = u (x, 0) = u (s, 0) = f (s) 
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4.3 Question 3 

[12 marks] 

Consider the Boundary Value Problem 

∇2 u = 0  in  D 

u = f on ∂D 

where D is a simply-connected 2D region with piecewise smooth boundary ∂D. 

(i) State the Maximum Principle for u on D. If  f = 10 at each point on the 

boundary ∂D, what is  u in D? Explain your answer. 

(ii) Now let D be the disc of radius R centered at the origin, 

D = (x, y) :  x 2 + y 2 ≤ R2 . 

Name and state (without proof) another property of u which gives the value of 

u at the center of the disc in terms of the values of u on the boundary ∂D = 
2{(x, y) :  x2 + y = R2}. Use this result to find u(0, 0) if on the boundary, u takes 

the values	   90, −π/2 ≤ θ ≤ π/2,  
u (R, θ) =  25,  π/2 ≤ θ ≤ π,   

7, π ≤ θ ≤ 3π/2. 

Solution: (i) Maximum principle: solution to laplace’s equation takes min/max 

on boundary. Thus u = 10. 

(ii) 

1 
∫ 2π 

u (0, 0) = f (θ) dθ 
2π 0 

1 ( π π 
= 90π + 25  + 7  

2π 2 2 
1 1 1 

= 90 + 25 + 7  
2 2 2 
123 

= 
2 

4.4 Question 4 

[8 marks] 

Find the smallest eigenvalue of the Sturm-Liouville problem 

∇2 v + λv = 0  in  D 

v = 0  on  ∂D 
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Part C
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where D is a quarter-disc D = {(r, θ) : 0  ≤ r ≤ 1, 0 ≤ θ ≤ π/2}. You may assume 

that the smallest eigenvalue is associated with the eigen-function that satisfies the 

above Sturm-Liouville problem and is non-zero on the interior of D. Explain your 

answer. Hint: use the given info on page 2. You do not need to solve the PDE. 

Solution: the eigen-function that is zero on ∂D and nonzero on the interior of D 

is 

v = J2 (rj2,1) sin  2θ 

and the smallest eigenvalue is 

λ = λ21 = j2
2 
,1 

10 
7



4.5 Question 5 

[20 marks] 

We consider the steady-state temperature on a simply-connected 2D domain D 

with piecewise-smooth boundary ∂D, 

∇2 u = 0  in  D 

u = f on ∂D 

NOTE: you do not need to solve the PDE to answer any of the questions below! 

(i) Suppose D is a square of side length 1 and u takes the values as shown in 

Figure 1. Let the origin (x, y) = (0, 0) be the lower left-hand corner of the square. 

y 
u
=
1
0
0

u
=
1
0
0

1 D 

u=0 

u=0 x 

1 

Figure 1: Setup for Question 5(i). 

(a) List the lines of symmetry.


Solution: x = 1/2, y = 1/2.


(b) Give a symmetry argument to find the steady-state temperature u at the 

center (x, y) = (1/2, 1/2) and at (3/4, 3/4). 

Solution: rotate about diagonal y = x, add, get (by max principle) u = 100. Then 

both temps are 90. 

(c) What is temperature gradient ∇u (proportional to heat flux) at the center 

of the square? 

Solution: zero, since lines of symmetry cross, i.e. heat flow lines. On vertical line 

of sym, ux = 0,  on  horiz,  uy = 0. Thus where lines cross, ∇u = 0.  

(d) What is the direction (up, down, right, left or zero) of the heat flux (i.e. 

gradient ∇u) at the  points  (x, y) =  (1/2, 3/4), (1/2, 1/4), (1/4, 1/2)? 

Solution: up, down, right 
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(ii) Suppose D is a square of side length 1/2 whose boundary is either kept at 

a specific temperature or is insulated, as shown in Figure 2. Assume the origin 

(x, y) = (0, 0) is the lower left-hand corner of the square. 

(a) Use a symmetry argument and your answer in (i) to find the steady-state 

temperature at the points (x, y) = (1/2, 0) and (1/4, 1/4). 

Solution: same as upper half of square. u (1/2, 0) is same as in center of square 

in (i)(b), 45. And also at (1/4, 1/4). 

(b) Draw the level curves. 
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Figure 2: Setup for Question 5(ii). 

(iii) Let D be the half disc of radius 1, insulated along the straight side and kept 

at 90o and 0 along the curved boundaries in the upper and lower right hand planes, 

respectively, as shown in Figure 3. 

(a) Use a symmetry argument to find the temperature at (x, y) =  (0, 0) (point 

A) and (x, y) = 1
2
, 0 (point B).


Solution: Same as left half of disc, boundary kept at 90 upper plane, 0 lower 

plane. Symmetry, rotate about x-axis, then entire boundary held at 90, so u = 90  

everywhere. But center line did not move, so u = 45 along center line. Points A and 

B are on center line, so temp is 45 on each. 

(b) Sketch the level (isothermal) curves (using solid lines) and the heat flow 

lines (using dashed lines). 
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Question 4 (continued) 

(b) [8 marks] Find an eigenvalue λ and corresponding eigenfunction v for the right 

triangle 

D = (x, y) : 0 < y < 
√

2x, 0 < x < 1 

with side lengths 1 and 
√

2. v and λ satisfy the Sturm-Liouville Problem 

2 v + λv = 0 in D, ∇ 
v = 0 on ∂D. 

Hint: you may use the eigenfunctions derived in-class for the rectangle, without 

derivation. You may find constructing a table useful for 2m2 + n2 (n,m = 1, 2, 3) 

(c) [5 BONUS marks] Find a function that is zero on the boundary of the triangle, 

nonzero and smooth on the interior, and use it to obtain an upper bound on the 

smallest eigenvalue of the triangle in (b). You don’t have to evaluate the integrals; 

just set them up. 

Solution: Eigenfunctions on rectangle are 

nπy π2 
( ) 

2 vmn = sin (mπx) sin , λmn = 2m 2 + n√
2 2 

2Make table for 2m2 + n , 

m\n 1 2 

1 3 5 

2 5 

3 

Thus 5 repeats, and both have eigenvalue λ21 = λ12 = 5π2/2. We add 

v = v21 + Av12 

We know these are both zero on the vertical and horizontal side. We find A such that 

they are zero on y = 
√

2x, 

0 = v x,
√

2x 

= v21 x,
√

2x + Av12 x,
√

2x 

= sin (2πx) sin (πx) + A sin (πx) sin (2πx) 

Thus A = −1. 

(c) Use v (x, y) = y (x − 1) 
(√

2x − y . Use Rayleigh Quotient, will be upper 

bound on λ1. 
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