Practice Test 1

1 Given

You may assume the eigenvalues of the Sturm-Liouville problem

$$
\begin{array}{rlc}
X^{\prime \prime}+\lambda X & =0, & 0<x<1 \\
X(0) & =0 & X(1)=0
\end{array}
$$

are $\lambda_{n}=n^{2} \pi^{2}$ and $X_{n}(x)=\sin (n x)$, for $n=1,2, \ldots$, without derivation.
You may also assume the following orthogonality conditions for m, n positive integers:

$$
\begin{aligned}
& \int_{0}^{1} \sin (m \pi x) \sin (n \pi x) d x= \begin{cases}1 / 2, & m=n \neq 0 \\
0, & m \neq n\end{cases} \\
& \int_{0}^{1} \cos (m \pi x) \cos (n \pi x) d x= \begin{cases}1 / 2, & m=n \neq 0 \\
0, & m \neq n .\end{cases}
\end{aligned}
$$

2 Question

Consider the following heat problem in dimensionless variables

$$
\begin{aligned}
u_{t} & =u_{x x}+\frac{\pi^{2}}{4} u-b, \quad 0<x<1, \quad t>0 \\
u(0, t) & =0, \quad u(1, t)=0, \quad t>0 \\
u(x, 0) & =u_{0} \quad 0<x<1 .
\end{aligned}
$$

(a) [3 points] Explain in terms of a heated rod precisely what the problem models mathematically.
(b) [3 points] Derive the equilibrium solution

$$
u_{E}(x)=\frac{4 b}{\pi^{2}}\left[1-\cos \left(\frac{\pi x}{2}\right)-\sin \left(\frac{\pi x}{2}\right)\right]
$$

It is insufficient to simply verify that the solution works.
(c) [3 points] Using $u_{E}(x)$, transform the given heat problem for $u(x, t)$ into the following problem for a function $v(x, t)$:

$$
\begin{aligned}
v_{t} & =v_{x x}+\frac{\pi^{2}}{4} v, \quad 0<x<1, \quad t>0 \\
v(0, t) & =0, \quad v(1, t)=0, \quad t>0 \\
v(x, 0) & =f(x) \quad 0<x<1
\end{aligned}
$$

where $f(x)$ will be determined by the transformation.
(d) [3 points] For an appropriate value of α show that the transformation $w(x, t)=$ $e^{\alpha t} v(x, t)$ further simplifies the problem to

$$
\begin{array}{rlrlr}
w_{t} & =w_{x x}, & 0<x<1, & t>0 \\
w(0, t) & =0, & w(1, t)=0, & t>0 \\
w(x, 0) & =f(x) & 0<x<1 . & &
\end{array}
$$

(e) [8 points] Derive the solution
$w(x, t)=\sum_{n=1}^{\infty} w_{n}(x, t)=\sum_{n=1}^{\infty} \frac{2}{\pi}\left(\frac{2\left(u_{0}-4 b / \pi^{2}\right)}{2 n-1}+\frac{32 b(2 n-1)}{\pi^{2}(4 n-3)(4 n-1)}\right) e^{-(2 n-1)^{2} \pi^{2} t} \sin ((2 n-1) \pi x)$
and hence solve for $u(x, t)=u_{E}(x)+\sum_{n=1}^{\infty} u_{n}(x, t)$ using the earlier transformations.

