Solutions to Practice Test 1

1 Given

You may assume the eigenvalues of the Sturm-Liouville problem

$$
\begin{array}{rlrl}
X^{\prime \prime}+\lambda X & =0, & 0<x<1 \\
X(0) & =0 & X(1)=0
\end{array}
$$

are $\lambda_{n}=n^{2} \pi^{2}$ and $X_{n}(x)=\sin (n x)$, for $n=1,2, \ldots$, without derivation.
You may also assume the following orthogonality conditions for m, n positive integers:

$$
\begin{aligned}
& \int_{0}^{1} \sin (m \pi x) \sin (n \pi x) d x= \begin{cases}1 / 2, & m=n \neq 0 \\
0, & m \neq n\end{cases} \\
& \int_{0}^{1} \cos (m \pi x) \cos (n \pi x) d x= \begin{cases}1 / 2, & m=n \neq 0 \\
0, & m \neq n .\end{cases}
\end{aligned}
$$

2 Question

Consider the following heat problem in dimensionless variables

$$
\begin{align*}
u_{t} & =u_{x x}+\frac{\pi^{2}}{4} u-b, \quad 0<x<1, \quad t>0 \tag{1}\\
u(0, t) & =0, \quad u(1, t)=0, \quad t>0 \tag{2}\\
u(x, 0) & =u_{0} \quad 0<x<1 . \tag{3}
\end{align*}
$$

(a) [3 points] Explain in terms of a heated rod precisely what the problem models mathematically.

Solution: The problem models heat transfer in a rod of (scaled) length 1, with thermal diffusivity 1 . The temperature is fixed at zero degrees at both ends and the rod is initially at a constant temperature u_{0}. Heat is absorbed througout the rod at a rate of b and produced/absorbed at a rate proportional to the current temperature (proportionality constant $1 / 4)$.
(b) [3 points] Derive the equilibrium solution

$$
u_{E}(x)=\frac{4 b}{\pi^{2}}\left(1-\cos \left(\frac{\pi x}{2}\right)-\sin \left(\frac{\pi x}{2}\right)\right)
$$

It is insufficient to simply verify that the solution works.
Solution: The equilibrium solution $u_{E}(x)$ satisfies

$$
\begin{gathered}
u_{E}^{\prime \prime}(x)+\frac{\pi^{2}}{4} u_{E}(x)=b \\
u_{E}(0)=0=u_{E}
\end{gathered}
$$

The ODE has solution

$$
u_{E}(x)=A \cos \left(\frac{\pi x}{2}\right)+B \sin \left(\frac{\pi x}{2}\right)+\frac{4 b}{\pi^{2}}
$$

Imposing the BCs gives

$$
\begin{aligned}
& u_{E}(0)=A+4 b / \pi^{2}=0 \\
& u_{E}(1)=B+4 b / \pi^{2}=0
\end{aligned}
$$

Solving for A, B gives $A=B=-4 b / \pi^{2}$. Putting things together gives

$$
u_{E}(x)=\frac{4 b}{\pi^{2}}\left(1-\cos \left(\frac{\pi x}{2}\right)-\sin \left(\frac{\pi x}{2}\right)\right)
$$

(c) [3 points] Using $u_{E}(x)$, transform the given heat problem for $u(x, t)$ into the following problem for a function $v(x, t)$:

$$
\begin{align*}
v_{t} & =v_{x x}+\frac{\pi^{2}}{4} v, \quad 0<x<1, \quad t>0 \tag{4}\\
v(0, t) & =0, \quad v(1, t)=0, \quad t>0 \tag{5}\\
v(x, 0) & =f(x) \quad 0<x<1 . \tag{6}
\end{align*}
$$

where $f(x)$ will be determined by the transformation.
Solution: We let

$$
v(x, t)=u(x, t)-u_{E}(x)
$$

or

$$
u(x, t)=v(x, t)+u_{E}(x)
$$

Then

$$
u_{t}=v_{t}, \quad u_{x x}=v_{x x}+u_{E}^{\prime \prime}=v_{x x}+b\left(\cos \left(\frac{\pi x}{2}\right)+\sin \left(\frac{\pi x}{2}\right)\right)
$$

so that the PDE (1) for $u(x, t)$ becomes

$$
\begin{aligned}
v_{t} & =v_{x x}+b\left(\cos \left(\frac{\pi x}{2}\right)+\sin \left(\frac{\pi x}{2}\right)\right)+\frac{\pi^{2}}{4} u_{E}+\frac{\pi^{2}}{4} v-b \\
& =v_{x x}+\frac{\pi^{2}}{4} v
\end{aligned}
$$

Thus, the PDE becomes

$$
v_{t}=v_{x x}+\frac{\pi^{2}}{4} v
$$

The BCs (2) become

$$
\begin{aligned}
& v(0, t)=u(0, t)-u_{E}(0)=0-0=0 \\
& v(1, t)=u(1, t)-u_{E}(1)=0-0=0
\end{aligned}
$$

The IC (3) becomes

$$
v(x, 0)=u(x, 0)-u_{E}(x)=u_{0}-\frac{4 b}{\pi^{2}}\left(1-\cos \left(\frac{\pi x}{2}\right)-\sin \left(\frac{\pi x}{2}\right)\right)
$$

We have shown that $v(x, t)$ satisfies the PDE (4), BCs (5) and the IC (6) with

$$
\begin{equation*}
f(x)=u_{0}-\frac{4 b}{\pi^{2}}\left(1-\cos \left(\frac{\pi x}{2}\right)-\sin \left(\frac{\pi x}{2}\right)\right) \tag{7}
\end{equation*}
$$

(d) [3 points] For an appropriate value of α show that the transformation $w(x, t)=$ $e^{\alpha t} v(x, t)$ further simplifies the problem to

$$
\begin{align*}
w_{t} & =w_{x x}, & 0<x<1, & t>0 \tag{8}\\
w(0, t) & =0, & w(1, t)=0, & t>0 \tag{9}\\
w(x, 0) & =f(x) & 0<x<1 . & \tag{10}
\end{align*}
$$

Solution: Letting $w(x, t)=e^{\alpha t} v(x, t)$, the BCs (5) and IC (6) become

$$
\begin{gathered}
w(0, t)=e^{\alpha t} v(0, t)=0 \\
w(1, t)=e^{\alpha t} v(1, t)=0 \\
w(x, 0)=v(x, 0)=f(x)
\end{gathered}
$$

To transform the PDE, note that $v(x, t)=e^{-\alpha t} w(x, t)$ and hence

$$
\begin{aligned}
v_{t} & =-\alpha e^{-\alpha t} w+e^{-\alpha t} w_{t} \\
v_{x x} & =e^{-\alpha t} w_{x x}
\end{aligned}
$$

so the $\operatorname{PDE}(4)$ for $v(x, t)$ becomes

$$
-\alpha e^{-\alpha t} w+e^{-\alpha t} w_{t}=e^{-\alpha t} w_{x x}+\frac{\pi^{2}}{4} e^{-\alpha t} w
$$

Multiplying by $e^{\alpha t}$ and rearranging gives

$$
w_{t}=w_{x x}+\left(\alpha+\frac{\pi^{2}}{4}\right) w
$$

Choosing $\alpha=-\pi^{2} / 4$ yields

$$
w_{t}=w_{x x}
$$

with $v(x, t)=e^{\pi^{2} t / 4} w(x, t)$. We have shown that $w(x, t)$ satisfies the PDE (8), BCs (9) and the IC (10) with $f(x)$ given in (7).
(e) [8 points] Derive the solution
$w(x, t)=\sum_{n=1}^{\infty} w_{n}(x, t)=\sum_{n=1}^{\infty} \frac{2}{\pi}\left(\frac{2\left(u_{0}-4 b / \pi^{2}\right)}{2 n-1}+\frac{32 b(2 n-1)}{\pi^{2}(4 n-3)(4 n-1)}\right) e^{-(2 n-1)^{2} \pi^{2} t} \sin ((2 n-1) \pi x)$
and hence solve for $u(x, t)=u_{E}(x)+\sum_{n=1}^{\infty} u_{n}(x, t)$ using the earlier transformations.
Solution: Note that the PDE (8), BCs (9) and the IC (10) are the basic heat problem we considered in class. We derived the solution using separation of variables,

$$
\begin{equation*}
w(x, t)=\sum_{n=1}^{\infty} B_{n} \sin (n \pi x) e^{-n^{2} \pi^{2} t} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}=2 \int_{0}^{1} w(x, 0) \sin (n \pi x) d x=2 \int_{0}^{1} f(x) \sin (n \pi x) d x \tag{12}
\end{equation*}
$$

and $f(x)$ is given in (7). Note that

$$
\begin{aligned}
\int_{0}^{1} \sin (n \pi x) d x & =\frac{1}{n \pi}[-\cos (n \pi x)]_{0}^{1} \\
& =\frac{1}{n \pi}(1-\cos (n \pi))=\frac{1}{n \pi}\left(1-(-1)^{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{1} \cos \left(\frac{\pi x}{2}\right) \sin (n \pi x) d x & =\int_{0}^{1} \frac{1}{2}\left(\sin \left(\frac{2 n+1}{2} \pi x\right)+\sin \left(\frac{2 n-1}{2} \pi x\right)\right) d x \\
& =\frac{1}{2}\left[-\frac{2 \cos \left(\frac{2 n+1}{2} \pi x\right)}{(2 n+1) \pi}-\frac{2 \cos \left(\frac{2 n-1}{2} \pi x\right)}{(2 n-1) \pi}\right]_{0}^{1} \\
& =\frac{1}{(2 n+1) \pi}+\frac{1}{(2 n-1) \pi} \\
& =\frac{4 n}{(2 n+1)(2 n-1) \pi} \\
& =\frac{1}{2}\left[-\frac{2 \sin \left(\frac{2 n+1}{2} \pi x\right)}{(2 n+1) \pi}+\frac{2 \sin \left(\frac{2 n-1}{2} \pi x\right)}{(2 n-1) \pi}\right]_{0}^{1} \\
\int_{0}^{1} \sin \left(\frac{\pi x}{2}\right) \sin (n \pi x) d x & =-\frac{\sin \left(\frac{2 n+1}{2} \pi\right)}{(2 n+1) \pi}+\frac{\sin \left(\frac{2 n-1}{2} \pi\right)}{(2 n-1) \pi} \\
& =-\frac{(-1)^{n}}{(2 n+1) \pi}+\frac{(-1)^{n+1}}{(2 n-1) \pi} \\
& =-\frac{4 n(-1)^{n}}{(2 n+1)(2 n-1) \pi}
\end{aligned}
$$

Thus (12) becomes

$$
\begin{aligned}
B_{n}= & 2 \int_{0}^{1} f(x) \sin (n \pi x) d x \\
= & 2 \int_{0}^{1}\left(u_{0}-\frac{4 b}{\pi^{2}}\left(1-\cos \left(\frac{\pi x}{2}\right)-\sin \left(\frac{\pi x}{2}\right)\right)\right) \sin (n \pi x) d x \\
= & 2\left(u_{0}-\frac{4 b}{\pi^{2}}\right) \int_{0}^{1} \sin (n \pi x) d x \\
& +\frac{8 b}{\pi^{2}} \int_{0}^{1}\left(\cos \left(\frac{\pi x}{2}\right)+\sin \left(\frac{\pi x}{2}\right)\right) \sin (n \pi x) d x \\
= & \frac{2}{n \pi}\left(u_{0}-\frac{4 b}{\pi^{2}}\right)\left(1-(-1)^{n}\right)+\frac{16 b n\left(1-(-1)^{n}\right)}{\pi^{3}(2 n+1)(2 n-1)} \\
= & \left\{\begin{array}{cc}
\frac{4\left(u_{0}-4 b / \pi^{2}\right)}{(2 m-1) \pi}+\frac{32 b(2 m-1)}{(4 m-1)(4 m-3) \pi^{2}}, & n=2 m-1 \text { odd } \\
0 & n \text { even }
\end{array}\right.
\end{aligned}
$$

Substituting B_{n} into (11) gives

$$
w(x, t)=\sum_{m=1}^{\infty} \frac{2}{\pi}\left(\frac{2\left(u_{0}-4 b / \pi^{2}\right)}{2 m-1}+\frac{32 b(2 m-1)}{\pi^{2}(4 m-1)(4 m-3)}\right) \sin ((2 m-1) \pi x) e^{-(2 m-1)^{2} \pi^{2} t}
$$

as required. The solution $u(x, t)$ is given by reversing our transformations,

$$
\begin{aligned}
u(x, t)= & e^{\pi^{2} t / 4} w(x, t)+u_{E}(x) \\
= & e^{\pi^{2} t / 4} \sum_{m=1}^{\infty} \frac{2}{\pi}\left(\frac{2\left(u_{0}-4 b / \pi^{2}\right)}{2 m-1}+\frac{32 b(2 m-1)}{\pi^{2}(4 m-1)(4 m-3)}\right) \sin ((2 m-1) \pi x) e^{-(2 m-1)^{2} \pi^{2} t} \\
& +\frac{4 b}{\pi^{2}}\left(1-\cos \left(\frac{\pi x}{2}\right)-\sin \left(\frac{\pi x}{2}\right)\right)
\end{aligned}
$$

Aside (optional): a quick check of the above formula for $w(x, t)$:

1. $w(0, t)=0=w(1, t)$
2. $w(x, 0)=$ fourier series of $f(x)$
3. $w_{t}=w_{x x}$ since $\sin ((2 m-1) \pi x) e^{-(2 m-1)^{2} \pi^{2} t}$ satisfies the PDE for all m.
