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18.303 Linear Partial Di¤erential Equations

Matthew J. Hancock

Fall 2004

1 Given

You may assume the eigenvalues of the Sturm-Liouville problem

X 00 + �X = 0; 0 < x < 1

X (0) = 0 X (1) = 0

are �n = n2�2 and Xn (x) = sin (nx), for n = 1; 2; :::, without derivation.

You may also assume the following orthogonality conditions for m, n positive integers:Z 1

0

sin (m�x) sin (n�x) dx =

(
1=2, m = n 6= 0;
0; m 6= n:Z 1

0

cos (m�x) cos (n�x) dx =

(
1=2, m = n 6= 0;
0; m 6= n:

2 Question

Consider the following heat problem in dimensionless variables

ut = uxx +
�2

4
u� b; 0 < x < 1; t > 0 (1)

u (0; t) = 0; u (1; t) = 0; t > 0 (2)

u (x; 0) = u0 0 < x < 1: (3)

(a) [3 points] Explain in terms of a heated rod precisely what the problem models math-

ematically.
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Solution: The problem models heat transfer in a rod of (scaled) length 1, with thermal

di¤usivity 1. The temperature is �xed at zero degrees at both ends and the rod is initially

at a constant temperature u0. Heat is absorbed througout the rod at a rate of b and pro-

duced/absorbed at a rate proportional to the current temperature (proportionality constant

1/4).

(b) [3 points] Derive the equilibrium solution

uE (x) =
4b

�2

�
1� cos

��x
2

�
� sin

��x
2

��
It is insu¢ cient to simply verify that the solution works.

Solution: The equilibrium solution uE (x) satis�es

u00E (x) +
�2

4
uE (x) = b

uE (0) = 0 = uE (1)

The ODE has solution

uE (x) = A cos
��x
2

�
+B sin

��x
2

�
+
4b

�2

Imposing the BCs gives

uE (0) = A+ 4b=�2 = 0

uE (1) = B + 4b=�2 = 0

Solving for A, B gives A = B = �4b=�2. Putting things together gives

uE (x) =
4b

�2

�
1� cos

��x
2

�
� sin

��x
2

��
(c) [3 points] Using uE (x), transform the given heat problem for u (x; t) into the following

problem for a function v (x; t):

vt = vxx +
�2

4
v; 0 < x < 1; t > 0 (4)

v (0; t) = 0; v (1; t) = 0; t > 0 (5)

v (x; 0) = f (x) 0 < x < 1: (6)

where f (x) will be determined by the transformation.

Solution: We let
v (x; t) = u (x; t)� uE (x)
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or

u (x; t) = v (x; t) + uE (x)

Then

ut = vt; uxx = vxx + u
00
E = vxx + b

�
cos
��x
2

�
+ sin

��x
2

��
so that the PDE (1) for u (x; t) becomes

vt = vxx + b
�
cos
��x
2

�
+ sin

��x
2

��
+
�2

4
uE +

�2

4
v � b

= vxx +
�2

4
v

Thus, the PDE becomes

vt = vxx +
�2

4
v

The BCs (2) become

v (0; t) = u (0; t)� uE (0) = 0� 0 = 0
v (1; t) = u (1; t)� uE (1) = 0� 0 = 0

The IC (3) becomes

v (x; 0) = u (x; 0)� uE (x) = u0 �
4b

�2

�
1� cos

��x
2

�
� sin

��x
2

��
We have shown that v (x; t) satis�es the PDE (4), BCs (5) and the IC (6) with

f (x) = u0 �
4b

�2

�
1� cos

��x
2

�
� sin

��x
2

��
(7)

(d) [3 points] For an appropriate value of � show that the transformation w (x; t) =

e�tv (x; t) further simpli�es the problem to

wt = wxx; 0 < x < 1; t > 0 (8)

w (0; t) = 0; w (1; t) = 0; t > 0 (9)

w (x; 0) = f (x) 0 < x < 1: (10)

Solution: Letting w (x; t) = e�tv (x; t), the BCs (5) and IC (6) become

w (0; t) = e�tv (0; t) = 0;

w (1; t) = e�tv (1; t) = 0;

w (x; 0) = v (x; 0) = f (x)
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To transform the PDE, note that v (x; t) = e��tw (x; t) and hence

vt = ��e��tw + e��twt
vxx = e��twxx

so the PDE (4) for v (x; t) becomes

��e��tw + e��twt = e��twxx +
�2

4
e��tw

Multiplying by e�t and rearranging gives

wt = wxx +

�
�+

�2

4

�
w

Choosing � = ��2=4 yields
wt = wxx

with v (x; t) = e�
2t=4w (x; t). We have shown that w (x; t) satis�es the PDE (8), BCs (9) and

the IC (10) with f (x) given in (7).

(e) [8 points] Derive the solution

w (x; t) =
1X
n=1

wn (x; t) =
1X
n=1

2

�

�
2 (u0 � 4b=�2)

2n� 1 +
32b (2n� 1)

�2 (4n� 3) (4n� 1)

�
e�(2n�1)

2�2t sin ((2n� 1)�x)

and hence solve for u (x; t) = uE (x) +
P1

n=1 un (x; t) using the earlier transformations.

Solution: Note that the PDE (8), BCs (9) and the IC (10) are the basic heat problem
we considered in class. We derived the solution using separation of variables,

w (x; t) =

1X
n=1

Bn sin (n�x) e
�n2�2t (11)

where

Bn = 2

Z 1

0

w (x; 0) sin (n�x) dx = 2

Z 1

0

f (x) sin (n�x) dx (12)

and f (x) is given in (7). Note thatZ 1

0

sin (n�x) dx =
1

n�
[� cos (n�x)]10

=
1

n�
(1� cos (n�)) = 1

n�
(1� (�1)n)
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Z 1

0

cos
��x
2

�
sin (n�x) dx =

Z 1

0

1

2

�
sin

�
2n+ 1

2
�x

�
+ sin

�
2n� 1
2

�x

��
dx

=
1

2

"
�
2 cos

�
2n+1
2
�x
�

(2n+ 1) �
�
2 cos

�
2n�1
2
�x
�

(2n� 1)�

#1
0

=
1

(2n+ 1) �
+

1

(2n� 1)�

=
4n

(2n+ 1) (2n� 1)�Z 1

0

sin
��x
2

�
sin (n�x) dx =

Z 1

0

1

2

�
� cos

�
2n+ 1

2
�x

�
+ cos

�
2n� 1
2

�x

��
dx

=
1

2

"
�
2 sin

�
2n+1
2
�x
�

(2n+ 1) �
+
2 sin

�
2n�1
2
�x
�

(2n� 1)�

#1
0

= �
sin
�
2n+1
2
�
�

(2n+ 1) �
+
sin
�
2n�1
2
�
�

(2n� 1)�

= � (�1)n

(2n+ 1) �
+

(�1)n+1

(2n� 1)�

= � 4n (�1)n

(2n+ 1) (2n� 1)�
Thus (12) becomes

Bn = 2

Z 1

0

f (x) sin (n�x) dx

= 2

Z 1

0

�
u0 �

4b

�2

�
1� cos

��x
2

�
� sin

��x
2

���
sin (n�x) dx

= 2

�
u0 �

4b

�2

�Z 1

0

sin (n�x) dx

+
8b

�2

Z 1

0

�
cos
��x
2

�
+ sin

��x
2

��
sin (n�x) dx

=
2

n�

�
u0 �

4b

�2

�
(1� (�1)n) + 16bn (1� (�1)n)

�3 (2n+ 1) (2n� 1)

=

(
4(u0�4b=�2)
(2m�1)� + 32b(2m�1)

(4m�1)(4m�3)�2 ; n = 2m� 1 odd
0 n even

Substituting Bn into (11) gives

w (x; t) =
1X
m=1

2

�

�
2 (u0 � 4b=�2)
2m� 1 +

32b (2m� 1)
�2 (4m� 1) (4m� 3)

�
sin ((2m� 1)�x) e�(2m�1)

2�2t
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as required. The solution u (x; t) is given by reversing our transformations,

u (x; t) = e�
2t=4w (x; t) + uE (x)

= e�
2t=4

1X
m=1

2

�

�
2 (u0 � 4b=�2)
2m� 1 +

32b (2m� 1)
�2 (4m� 1) (4m� 3)

�
sin ((2m� 1)�x) e�(2m�1)

2�2t

+
4b

�2

�
1� cos

��x
2

�
� sin

��x
2

��
Aside (optional): a quick check of the above formula for w (x; t):

1. w (0; t) = 0 = w (1; t)

2. w (x; 0) = fourier series of f (x)

3. wt = wxx since sin ((2m� 1)�x) e�(2m�1)
2�2t satis�es the PDE for all m.

(f) [4 points] Prove that the solution u (x; t) is unique. [Hint: �rst show that w (x; t) is

unique].

Solution: We follow the standard uniqueness proof we used in class and on the as-

signments. Suppose w1 and w2 both satisfy the PDE (8), BCs (9) and the IC (10). Then

h (x; t) = w1 (x; t)� w2 (x; t) satis�es

ht = hxx; 0 < x < 1; t > 0

h (0; t) = 0; h (1; t) = 0; t > 0

h (x; 0) = 0 0 < x < 1:

De�ne

H (t) =

Z 1

0

h2 (x; t) dx

Di¤erentiate in time,

dH

dt
=

Z 1

0

2hhtdx =

Z 1

0

2hhxxdx; by PDE

= 2 [hhx]
1
0 � 2

Z 1

0

h2xdx; integrating by parts

= �2
Z 1

0

h2xdx: applying the BCs

Thus dH=dt � 0. Now H (t) � 0 since the integrand is everywhere non-negative. Also,

H (0) = 0 since h (x; 0) = 0 for all x. Thus H (t) is a non-negative non-increasing function

that starts at 0, and hence H (t) must be zero for all time t. This implies, since the integrand

h (x; t) is non-negative, that h (x; t) = 0 for all t and x. Hence w1 (x; t) = w2 (x; t) and the

solution w (x; t) is unique.
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